
Varv: Reprogrammable Interactive Sofware as a Declarative
Data Structure

Marcel Borowski Luke Murray Rolf Bagge
marcel.borowski@cs.au.dk lsmurray@mit.edu rolf@cavi.au.dk

Aarhus University MIT CSAIL Aarhus University
Aarhus, Denmark Cambridge, United States Aarhus, Denmark

Janus Bager Kristensen Arvind Satyanarayan Clemens N. Klokmose
jbk@cavi.au.dk arvindsatya@mit.edu clemens@cs.au.dk

Aarhus University MIT CSAIL Aarhus University
Aarhus, Denmark Cambridge, United States Aarhus, Denmark

Figure 1: Varv Examples: (a) A todo list web application that is inherently extensible. Here, a basic todo list is extended with the
ability to complete and delete todos by adding two new concept defnitions and new modifed template defnitions. (b) A board
game toolkit that defnes abstractions for board game logic. The games “Checkers” and “Othello” were implemented with
the toolkit and then merged into a new “Checkers-O-Thello” game with the addition of a short concept defnition. As Varv
applications are represented as data structures, higher-level tooling can be developed including a block-based editor (right),
an inspector to go from an element in the view to the corresponding template or data (context menu to the left), and a data
inspector for live editing application state (middle).

ABSTRACT
Most modern applications are immutable and turn-key despite the
acknowledged benefts of empowering users to modify their soft-
ware. Writing extensible software remains challenging, even for
expert programmers. Reprogramming or extending existing soft-
ware is often laborious or wholly blocked, requiring sophisticated
knowledge of application architecture or setting up a development
environment. We present Varv, a programming model representing
reprogrammable interactive software as a declarative data struc-
ture. Varv defnes interactive applications as a set of concepts that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

consist of a schema and actions. Applications in Varv support incre-
mental modifcation, allowing users to reprogram through addition
and selectively suppress, modify, or add behavior. Users can defne
high-level concepts, creating an abstraction layer and efectively a
domain-specifc language for their application domain, emphasizing
reuse and modifcation. We demonstrate the reprogramming and
collaboration capabilities of Varv in two case studies and illustrate
how the event engine allows for extensive tooling support.

CCS CONCEPTS
• Human-centered computing → Web-based interaction; Collabo-
rative interaction; User interface programming; • Software and
its engineering → Real-time systems software; Abstraction, model-
ing and modularity.

KEYWORDS
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM. declarative programming, reprogramming, interactive software, ACM ISBN 978-1-4503-9157-3/22/04. . . $15.00
https://doi.org/10.1145/3491102.3502064 liveness, real-time collaboration

https://doi.org/10.1145/3491102.3502064
mailto:permissions@acm.org

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Borowski, et al.

ACM Reference Format:
Marcel Borowski, Luke Murray, Rolf Bagge, Janus Bager Kristensen, Arvind
Satyanarayan, and Clemens N. Klokmose. 2022. Varv: Reprogrammable
Interactive Software as a Declarative Data Structure. In CHI Conference on
Human Factors in Computing Systems (CHI ’22), April 29-May 5, 2022, New
Orleans, LA, USA. ACM, New York, NY, USA, 20 pages. https://doi.org/10.
1145/3491102.3502064

1 INTRODUCTION
It has long been acknowledged that most programs are writ-
ten not by professional software developers but rather by end-
users [42] who, for instance, regularly build small computational
tools such as creating their own interfaces in spreadsheets. However,
most application software is constructed, packaged, and shared as
hermetically-sealed turn-key products [34, 56]. As a result, end-
users — including professionally trained programmers — have little
power to change the applications they use. In their foundational
1977 piece on Personal Dynamic Media, Kay and Goldberg envi-
sioned software being malleable, so that users could easily redefne
and reshape it to suit their idiosyncratic needs [37].

Today, software malleability primarily occurs through scripting
(e.g., macOS Automator, iOS Shortcuts, or IFTTT) or add-on ex-
tensions (e.g., Firefox, Figma, or Visual Studio Code). While such
facilities can yield “customization ecosystems” that increase the
value of the application for all users [27], these approaches present
a non-trivial burden for both software creators and end-user pro-
grammers. Writing extensible software is an explicit choice that
software creators must make, and requires careful design and archi-
tectural decisions that are often untenable for small-scale software
creators to consider as the customization ecosystem is not guaran-
teed to fourish. Moreover, the range of customizations these facili-
ties support is circumscribed by the design of their APIs, thereby
presenting a catch-22: it may not be possible to customize particular
aspects of an application if the creator did not foresee the possibil-
ity of doing so. Finally, the APIs themselves are idiosyncratic and
application-specifc. As a result, it can be challenging to engage in
customizations in a cross-cutting fashion — for instance, porting an
extension from one context to another typically amounts to rewrit-
ing it from scratch, and extending or composing add-ons together
is inconceivable without direct modifcation of their source code.

In response, we present Varv,1 a declarative language for re-
programmable interactive software that decouples specifcation
(the what) from execution (the how). With Varv, users can focus
on specifying interactive applications as compositions of concepts,
or individual units of dynamic functionality. Concepts comprise
a schema, that specifes the shape and type of the concept’s state;
actions, that describe valid transformations of the state; and, trig-
gers, or events that cause transitions between states. Inspired by
Vega [66] and Vega-Lite [65], concepts are specifed as data struc-
tures expressed in JSON (JavaScript Object Notation). The Varv
runtime is responsible for all execution concerns, including parsing
declarative specifcations, assembling the corresponding datafow
graph, and handling event creation and propagation. The runtime
also handles bookkeeping associated with storing application state

1The Swedish word varv carries the meanings “revolution” or “in layers.” In geology,
a varv refers to the annual sedimentary layer in a glacial lake. In the same vein,
application code can be layered in our Varv system.

and rendering the resultant interface — Varv is designed to be ag-
nostic to the specifc ways these processes occur. As a result, Varv
can target a variety of data backends or frontend modalities.

Varv’s structured, declarative approach contrasts existing meth-
ods for constructing interactive software, which typically involves
writing unstructured blobs of imperative code. It yields an accretive
development process, with applications that are inherently exten-
sible. In particular, application developers need no longer write
explicit extensibility APIs. Instead, to introduce a new piece of
functionality, end-user programmers introduce a new JSON object
at runtime. These JSON objects can extend or override existing
concept defnitions in a straightforward fashion or use a series of
composition operators to construct new concepts from existing parts.
The Varv architecture consolidates new and existing specifcations
and hot-swaps them to produce a live programming experience (i.e.,
users see changes they make to Varv program specifcations re-
fected immediately). In this way, Varv blurs the boundary between
developing the “core” application and extending it, making it possi-
ble for users to tinker with interactive functionality incrementally.

We evaluate the feasibility and expressivity of our approach
through demonstration [44]. We frst instantiate Varv in Web-
strates [41], a web-based environment that provides persistence
and real-time synchronization of application data (i.e., state). While
Webstrates provides our data layer, Codestrates [13] provides a code
editing layer on top of web pages that enables instantiating IDE-like
tools inside a web app. With this Webstrates-based implementation,
we develop two case studies to demonstrate that Varv can be used
to author a rich design space of interactive applications. The case
studies illustrate the experience of using Varv as a live program-
ming tool for user interfaces, akin to real-time manipulation of
HTML and CSS using the browser’s built-in developer tools, but
now for interactive behavior as well. We show how users can author
Varv applications incrementally — one feature at a time, where each
feature is implemented as an extension to the application rather
than a modifcation of existing source code — and how concepts
can be used to prototype domain-specifc languages for develop-
ing and composing classes of applications. This implementation
required no modifcations to Webstrates itself. The case studies
also demonstrate the synergies between the two paradigms: using
Varv with Webstrates yields a live and collaborative reprogram-
ming experience. However, to illustrate that Varv is agnostic to data
storage, we develop two additional prototype implementations, one
packaged in Electron [60], an environment that enables local devel-
opment of Varv applications, and one deployed on Observable [57],
a web-based notebook environment for JavaScript.

We, moreover, demonstrate the implications of our approach
through a series of prototype sketches of higher-level tooling to
support Varv application development. Although Varv applications
are specifed as JSON-based data structures, we show how this rep-
resentation facilitates a range of authoring experiences, including
visual block-based editing and alternative specifcation formats
such as YAML. Similarly, we show how Varv’s declarative repre-
sentation enables visual inspectors for debugging. With Varv, we
set a foundation for malleable software to enable users — who are,
for now, profcient in programming — to modify their software and
envision how it is structured. Further, declarative representations

https://doi.org/10.1145/3491102.3502064
https://doi.org/10.1145/3491102.3502064

Varv: Reprogrammable Interactive Sofware as a Declarative Data Structure CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

can facilitate future research on more usable, higher-level systems
for reprogrammable interactive software.

2 THE VARV LANGUAGE

2.1 Design Goals
Varv’s design is motivated by the following three design goals:

Provide a Structured Declarative Representation. Declarative rep-
resentations have become widely adopted in various domains be-
cause they allow users to focus primarily on composing domain-
specifc primitives at a higher level of abstraction while deferring
execution concerns to the underlying architecture or runtime [28].
Varv uses declarative language constructs to defne application
state and state transitions and provides an execution engine that
parses declarative Varv specifcations to produce an interactive
application. Moreover, inspired by declarative representations of
interactive visualizations like Vega [66] and Vega-Lite [65], Varv
embeds its declarative representation of interactive software as
a data structure expressed as JSON. In doing so, Varv lowers the
threshold for programmatically reasoning about the semantics of
interactive software. As a result, it becomes more feasible for the
Varv architecture to hot-swap declarative specifcations to enable
live programming and an ecosystem of higher-level development
tools to fourish (akin to the one found around Vega and Vega-
Lite [70, 72, 73]).

Accretive Extensibility. Developers currently rely on extensibility
APIs written by software creators to extend interactive software.
However, such an approach presents a catch-22: it can be difcult,
if not impossible, to customize an application in a particular way
if the creator did not design a corresponding API. In contrast, to
reduce a creator’s burden of explicitly designing for extensibility,
Varv defnes interactive applications in terms of individual units
called concepts. To extend a Varv application, a developer need only
add a new specifcation to the runtime with entries to augment
or override properties of existing concepts or introduce new con-
cepts from a combination of existing parts. Thus, the extensions
are themselves units that layer on top of the base defnition of
an application. This incremental approach facilitates experimen-
tation: a developer can safely try implementing new features, or
an end-user can selectively enable or disable extensions without
fear of breaking or changing the original program. Moreover, this
process of extension-by-addition simplifes resolving conficting ex-
tensions by adding another specifcation to resolve the conficting
properties. Hence, our aim is the open authorial principle [7] that
states that program modifcation should be possible purely through
composition without rewriting existing code.

Decouple Application Logic from Interaction Modality. Existing
methods for specifying interactive behaviors — namely, event call-
backs — tightly couple an input event (e.g., mouse clicks, keypresses,
swipe gestures) with the resultant action it triggers (e.g., selecting a
piece on a board game, moving it from one square to another). As a
result, retargeting an interactive application from one modality to
another (e.g., desktop to mobile) or supporting custom interactive
triggers (e.g., keyboard shortcuts) requires signifcant manual de-
velopment efort. Varv decouples these two pieces: an application

can be defned in an abstract, purely self-contained manner with
custom, semantically-meaningful event names taking the place of
low-level input events (e.g., pieceSelected instead of click). A
subsequent specifcation then makes this abstract defnition more
concrete by binding semantic events to a specifc interaction modal-
ity (e.g., pieceSelected is triggered by a tap).

2.2 Language Primitives
Concepts (see Figure 2

Varv: Reprogrammable Interactive Software as a Declarative Data Structure CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

can facilitate future research on more usable, higher-level systems
for reprogrammable interactive software.

2 THE VARV LANGUAGE
2.1 Design Goals
Varv’s design is motivated by the following three design goals:

Provide a Structured Declarative Representation. Declarative rep-
resentations have become widely adopted in various domains be-
cause they allow users to focus primarily on composing domain-
specific primitives at a higher level of abstraction while deferring
execution concerns to the underlying architecture or runtime [28].
Varv uses declarative language constructs to define application
state and state transitions and provides an execution engine that
parses declarative Varv specifications to produce an interactive
application. Moreover, inspired by declarative representations of
interactive visualizations like Vega [66] and Vega-Lite [65], Varv
embeds its declarative representation of interactive software as
a data structure expressed as JSON. In doing so, Varv lowers the
threshold for programmatically reasoning about the semantics of
interactive software. As a result, it becomes more feasible for the
Varv architecture to hot-swap declarative specifications to enable
live programming and an ecosystem of higher-level development
tools to flourish (akin to the one found around Vega and Vega-
Lite [70, 72, 73]).

Accretive Extensibility. Developers currently rely on extensibility
APIs written by software creators to extend interactive software.
However, such an approach presents a catch-22: it can be difficult,
if not impossible, to customize an application in a particular way
if the creator did not design a corresponding API. In contrast, to
reduce a creator’s burden of explicitly designing for extensibility,
Varv defines interactive applications in terms of individual units
called concepts. To extend a Varv application, a developer need only
add a new specification to the runtime with entries to augment
or override properties of existing concepts or introduce new con-
cepts from a combination of existing parts. Thus, the extensions
are themselves units that layer on top of the base definition of
an application. This incremental approach facilitates experimen-
tation: a developer can safely try implementing new features, or
an end-user can selectively enable or disable extensions without
fear of breaking or changing the original program. Moreover, this
process of extension-by-addition simplifies resolving conflicting ex-
tensions by adding another specification to resolve the conflicting
properties. Hence, our aim is the open authorial principle [7] that
states that program modification should be possible purely through
composition without rewriting existing code.

Decouple Application Logic from Interaction Modality. Existing
methods for specifying interactive behaviors— namely, event call-
backs— tightly couple an input event (e.g., mouse clicks, keypresses,
swipe gestures) with the resultant action it triggers (e.g., selecting a
piece on a board game, moving it from one square to another). As a
result, retargeting an interactive application from one modality to
another (e.g., desktop to mobile) or supporting custom interactive
triggers (e.g., keyboard shortcuts) requires significant manual de-
velopment effort. Varv decouples these two pieces: an application

can be defined in an abstract, purely self-contained manner with
custom, semantically-meaningful event names taking the place of
low-level input events (e.g., pieceSelected instead of click). A
subsequent specification then makes this abstract definition more
concrete by binding semantic events to a specific interaction modal-
ity (e.g., pieceSelected is triggered by a tap).

2.2 Language Primitives
Concepts (see Figure 2 C) are Varv’s core building block. They
define individual named units of interactive behavior— for example,
an “item” in a todo list that can be assigned or marked as completed,
or a “piece” that can be moved along the squares of a board game or
jump over other pieces. Each concept comprises a schema S , which
determines the concept’s state (i.e., data), and actions A , which
enumerate the ways this state can change through interaction.
Concepts can be augmented or extended in two ways: additional
specifications can be introduced (e.g., Figure 2b) which reference
an existing concept by name, and extend or override its properties;
or, a variety of extension E operators can be used to define new
concepts from existing parts.

Varv’s concepts combine ideas from several different program-
ming paradigms. At first glance, concepts seemingly map to classes
in object-oriented programming (OOP), offering a mechanism for
modularity, reuse, mixins, and traits. However, Varv’s concepts
make a fundamental departure: concepts are not encapsulated units
(i.e., a concept’s state and actions can be referenced from another).
This design choice emulates the Store design pattern adopted by
many popular JavaScript frontend libraries (e.g., Redux, Vue, and
Svelte). Stores centralize application states, decoupling them from
state transitions to aid rapid prototyping and developing cross-
cutting components. Varv’s unencapsulated concepts retain this
affordance without sacrificing the modularity of OOP classes. We
elaborate on these and other differences between Varv and existing
programming paradigms in subsection 7.3.

2.2.1 Schema. The schema defines the shape and type of data as-
sociated with a concept. The syntax for the schema definition uses
a modified version of JSON Schema [62] and supports a subset of
the JSON Schema functionality. Varv extends JSON Schema with
shorthands, making the language more concise and easier to read
and write. For example, {"label":{"type":"string"}} can be
written as the shorthand {"label":"string"}. Varv concepts can
be referenced directly by name within the schema to specify nested
state. For example, Figure 2 defines the schema of a "todoList"
concept as an array of "todo" concept instances. Varv also supports
deriving properties from existing state by specifying a "derive"
object which expects an array of "properties" that are processed
through an array of "transform" actions. Varv merges the prop-
erties and actions to generate a function that produces the derived
value. For instance, in Figure 2, the "totalCount" property of the
"todoList" concept is calculated as the "length" (a built-in ac-
tion) of the "todos" property.

Early prototypes of Varv did not provide an explicit definition
of concept state. Instead, the state was implicitly created and ma-
nipulated through sequences of actions. However, as we built in-
creasingly complex applications, we discovered that this implicit
treatment reduced visibility [12] into concept state (i.e., it was not

) are Varv’s core building block. They
defne individual named units of interactive behavior — for example,
an “item” in a todo list that can be assigned or marked as completed,
or a “piece” that can be moved along the squares of a board game or
jump over other pieces. Each concept comprises a schema

Varv: Reprogrammable Interactive Software as a Declarative Data Structure CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

can facilitate future research on more usable, higher-level systems
for reprogrammable interactive software.

2 THE VARV LANGUAGE
2.1 Design Goals
Varv’s design is motivated by the following three design goals:

Provide a Structured Declarative Representation. Declarative rep-
resentations have become widely adopted in various domains be-
cause they allow users to focus primarily on composing domain-
specific primitives at a higher level of abstraction while deferring
execution concerns to the underlying architecture or runtime [28].
Varv uses declarative language constructs to define application
state and state transitions and provides an execution engine that
parses declarative Varv specifications to produce an interactive
application. Moreover, inspired by declarative representations of
interactive visualizations like Vega [66] and Vega-Lite [65], Varv
embeds its declarative representation of interactive software as
a data structure expressed as JSON. In doing so, Varv lowers the
threshold for programmatically reasoning about the semantics of
interactive software. As a result, it becomes more feasible for the
Varv architecture to hot-swap declarative specifications to enable
live programming and an ecosystem of higher-level development
tools to flourish (akin to the one found around Vega and Vega-
Lite [70, 72, 73]).

Accretive Extensibility. Developers currently rely on extensibility
APIs written by software creators to extend interactive software.
However, such an approach presents a catch-22: it can be difficult,
if not impossible, to customize an application in a particular way
if the creator did not design a corresponding API. In contrast, to
reduce a creator’s burden of explicitly designing for extensibility,
Varv defines interactive applications in terms of individual units
called concepts. To extend a Varv application, a developer need only
add a new specification to the runtime with entries to augment
or override properties of existing concepts or introduce new con-
cepts from a combination of existing parts. Thus, the extensions
are themselves units that layer on top of the base definition of
an application. This incremental approach facilitates experimen-
tation: a developer can safely try implementing new features, or
an end-user can selectively enable or disable extensions without
fear of breaking or changing the original program. Moreover, this
process of extension-by-addition simplifies resolving conflicting ex-
tensions by adding another specification to resolve the conflicting
properties. Hence, our aim is the open authorial principle [7] that
states that program modification should be possible purely through
composition without rewriting existing code.

Decouple Application Logic from Interaction Modality. Existing
methods for specifying interactive behaviors— namely, event call-
backs— tightly couple an input event (e.g., mouse clicks, keypresses,
swipe gestures) with the resultant action it triggers (e.g., selecting a
piece on a board game, moving it from one square to another). As a
result, retargeting an interactive application from one modality to
another (e.g., desktop to mobile) or supporting custom interactive
triggers (e.g., keyboard shortcuts) requires significant manual de-
velopment effort. Varv decouples these two pieces: an application

can be defined in an abstract, purely self-contained manner with
custom, semantically-meaningful event names taking the place of
low-level input events (e.g., pieceSelected instead of click). A
subsequent specification then makes this abstract definition more
concrete by binding semantic events to a specific interaction modal-
ity (e.g., pieceSelected is triggered by a tap).

2.2 Language Primitives
Concepts (see Figure 2 C) are Varv’s core building block. They
define individual named units of interactive behavior— for example,
an “item” in a todo list that can be assigned or marked as completed,
or a “piece” that can be moved along the squares of a board game or
jump over other pieces. Each concept comprises a schema S , which
determines the concept’s state (i.e., data), and actions A , which
enumerate the ways this state can change through interaction.
Concepts can be augmented or extended in two ways: additional
specifications can be introduced (e.g., Figure 2b) which reference
an existing concept by name, and extend or override its properties;
or, a variety of extension E operators can be used to define new
concepts from existing parts.

Varv’s concepts combine ideas from several different program-
ming paradigms. At first glance, concepts seemingly map to classes
in object-oriented programming (OOP), offering a mechanism for
modularity, reuse, mixins, and traits. However, Varv’s concepts
make a fundamental departure: concepts are not encapsulated units
(i.e., a concept’s state and actions can be referenced from another).
This design choice emulates the Store design pattern adopted by
many popular JavaScript frontend libraries (e.g., Redux, Vue, and
Svelte). Stores centralize application states, decoupling them from
state transitions to aid rapid prototyping and developing cross-
cutting components. Varv’s unencapsulated concepts retain this
affordance without sacrificing the modularity of OOP classes. We
elaborate on these and other differences between Varv and existing
programming paradigms in subsection 7.3.

2.2.1 Schema. The schema defines the shape and type of data as-
sociated with a concept. The syntax for the schema definition uses
a modified version of JSON Schema [62] and supports a subset of
the JSON Schema functionality. Varv extends JSON Schema with
shorthands, making the language more concise and easier to read
and write. For example, {"label":{"type":"string"}} can be
written as the shorthand {"label":"string"}. Varv concepts can
be referenced directly by name within the schema to specify nested
state. For example, Figure 2 defines the schema of a "todoList"
concept as an array of "todo" concept instances. Varv also supports
deriving properties from existing state by specifying a "derive"
object which expects an array of "properties" that are processed
through an array of "transform" actions. Varv merges the prop-
erties and actions to generate a function that produces the derived
value. For instance, in Figure 2, the "totalCount" property of the
"todoList" concept is calculated as the "length" (a built-in ac-
tion) of the "todos" property.

Early prototypes of Varv did not provide an explicit definition
of concept state. Instead, the state was implicitly created and ma-
nipulated through sequences of actions. However, as we built in-
creasingly complex applications, we discovered that this implicit
treatment reduced visibility [12] into concept state (i.e., it was not

, which
determines the concept’s state (i.e., data), and actions

Varv: Reprogrammable Interactive Software as a Declarative Data Structure CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

can facilitate future research on more usable, higher-level systems
for reprogrammable interactive software.

2 THE VARV LANGUAGE
2.1 Design Goals
Varv’s design is motivated by the following three design goals:

Provide a Structured Declarative Representation. Declarative rep-
resentations have become widely adopted in various domains be-
cause they allow users to focus primarily on composing domain-
specific primitives at a higher level of abstraction while deferring
execution concerns to the underlying architecture or runtime [28].
Varv uses declarative language constructs to define application
state and state transitions and provides an execution engine that
parses declarative Varv specifications to produce an interactive
application. Moreover, inspired by declarative representations of
interactive visualizations like Vega [66] and Vega-Lite [65], Varv
embeds its declarative representation of interactive software as
a data structure expressed as JSON. In doing so, Varv lowers the
threshold for programmatically reasoning about the semantics of
interactive software. As a result, it becomes more feasible for the
Varv architecture to hot-swap declarative specifications to enable
live programming and an ecosystem of higher-level development
tools to flourish (akin to the one found around Vega and Vega-
Lite [70, 72, 73]).

Accretive Extensibility. Developers currently rely on extensibility
APIs written by software creators to extend interactive software.
However, such an approach presents a catch-22: it can be difficult,
if not impossible, to customize an application in a particular way
if the creator did not design a corresponding API. In contrast, to
reduce a creator’s burden of explicitly designing for extensibility,
Varv defines interactive applications in terms of individual units
called concepts. To extend a Varv application, a developer need only
add a new specification to the runtime with entries to augment
or override properties of existing concepts or introduce new con-
cepts from a combination of existing parts. Thus, the extensions
are themselves units that layer on top of the base definition of
an application. This incremental approach facilitates experimen-
tation: a developer can safely try implementing new features, or
an end-user can selectively enable or disable extensions without
fear of breaking or changing the original program. Moreover, this
process of extension-by-addition simplifies resolving conflicting ex-
tensions by adding another specification to resolve the conflicting
properties. Hence, our aim is the open authorial principle [7] that
states that program modification should be possible purely through
composition without rewriting existing code.

Decouple Application Logic from Interaction Modality. Existing
methods for specifying interactive behaviors— namely, event call-
backs— tightly couple an input event (e.g., mouse clicks, keypresses,
swipe gestures) with the resultant action it triggers (e.g., selecting a
piece on a board game, moving it from one square to another). As a
result, retargeting an interactive application from one modality to
another (e.g., desktop to mobile) or supporting custom interactive
triggers (e.g., keyboard shortcuts) requires significant manual de-
velopment effort. Varv decouples these two pieces: an application

can be defined in an abstract, purely self-contained manner with
custom, semantically-meaningful event names taking the place of
low-level input events (e.g., pieceSelected instead of click). A
subsequent specification then makes this abstract definition more
concrete by binding semantic events to a specific interaction modal-
ity (e.g., pieceSelected is triggered by a tap).

2.2 Language Primitives
Concepts (see Figure 2 C) are Varv’s core building block. They
define individual named units of interactive behavior— for example,
an “item” in a todo list that can be assigned or marked as completed,
or a “piece” that can be moved along the squares of a board game or
jump over other pieces. Each concept comprises a schema S , which
determines the concept’s state (i.e., data), and actions A , which
enumerate the ways this state can change through interaction.
Concepts can be augmented or extended in two ways: additional
specifications can be introduced (e.g., Figure 2b) which reference
an existing concept by name, and extend or override its properties;
or, a variety of extension E operators can be used to define new
concepts from existing parts.

Varv’s concepts combine ideas from several different program-
ming paradigms. At first glance, concepts seemingly map to classes
in object-oriented programming (OOP), offering a mechanism for
modularity, reuse, mixins, and traits. However, Varv’s concepts
make a fundamental departure: concepts are not encapsulated units
(i.e., a concept’s state and actions can be referenced from another).
This design choice emulates the Store design pattern adopted by
many popular JavaScript frontend libraries (e.g., Redux, Vue, and
Svelte). Stores centralize application states, decoupling them from
state transitions to aid rapid prototyping and developing cross-
cutting components. Varv’s unencapsulated concepts retain this
affordance without sacrificing the modularity of OOP classes. We
elaborate on these and other differences between Varv and existing
programming paradigms in subsection 7.3.

2.2.1 Schema. The schema defines the shape and type of data as-
sociated with a concept. The syntax for the schema definition uses
a modified version of JSON Schema [62] and supports a subset of
the JSON Schema functionality. Varv extends JSON Schema with
shorthands, making the language more concise and easier to read
and write. For example, {"label":{"type":"string"}} can be
written as the shorthand {"label":"string"}. Varv concepts can
be referenced directly by name within the schema to specify nested
state. For example, Figure 2 defines the schema of a "todoList"
concept as an array of "todo" concept instances. Varv also supports
deriving properties from existing state by specifying a "derive"
object which expects an array of "properties" that are processed
through an array of "transform" actions. Varv merges the prop-
erties and actions to generate a function that produces the derived
value. For instance, in Figure 2, the "totalCount" property of the
"todoList" concept is calculated as the "length" (a built-in ac-
tion) of the "todos" property.

Early prototypes of Varv did not provide an explicit definition
of concept state. Instead, the state was implicitly created and ma-
nipulated through sequences of actions. However, as we built in-
creasingly complex applications, we discovered that this implicit
treatment reduced visibility [12] into concept state (i.e., it was not

, which
enumerate the ways this state can change through interaction.
Concepts can be augmented or extended in two ways: additional
specifcations can be introduced (e.g., Figure 2b) which reference
an existing concept by name, and extend or override its properties;
or, a variety of extension

Varv: Reprogrammable Interactive Software as a Declarative Data Structure CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

can facilitate future research on more usable, higher-level systems
for reprogrammable interactive software.

2 THE VARV LANGUAGE
2.1 Design Goals
Varv’s design is motivated by the following three design goals:

Provide a Structured Declarative Representation. Declarative rep-
resentations have become widely adopted in various domains be-
cause they allow users to focus primarily on composing domain-
specific primitives at a higher level of abstraction while deferring
execution concerns to the underlying architecture or runtime [28].
Varv uses declarative language constructs to define application
state and state transitions and provides an execution engine that
parses declarative Varv specifications to produce an interactive
application. Moreover, inspired by declarative representations of
interactive visualizations like Vega [66] and Vega-Lite [65], Varv
embeds its declarative representation of interactive software as
a data structure expressed as JSON. In doing so, Varv lowers the
threshold for programmatically reasoning about the semantics of
interactive software. As a result, it becomes more feasible for the
Varv architecture to hot-swap declarative specifications to enable
live programming and an ecosystem of higher-level development
tools to flourish (akin to the one found around Vega and Vega-
Lite [70, 72, 73]).

Accretive Extensibility. Developers currently rely on extensibility
APIs written by software creators to extend interactive software.
However, such an approach presents a catch-22: it can be difficult,
if not impossible, to customize an application in a particular way
if the creator did not design a corresponding API. In contrast, to
reduce a creator’s burden of explicitly designing for extensibility,
Varv defines interactive applications in terms of individual units
called concepts. To extend a Varv application, a developer need only
add a new specification to the runtime with entries to augment
or override properties of existing concepts or introduce new con-
cepts from a combination of existing parts. Thus, the extensions
are themselves units that layer on top of the base definition of
an application. This incremental approach facilitates experimen-
tation: a developer can safely try implementing new features, or
an end-user can selectively enable or disable extensions without
fear of breaking or changing the original program. Moreover, this
process of extension-by-addition simplifies resolving conflicting ex-
tensions by adding another specification to resolve the conflicting
properties. Hence, our aim is the open authorial principle [7] that
states that program modification should be possible purely through
composition without rewriting existing code.

Decouple Application Logic from Interaction Modality. Existing
methods for specifying interactive behaviors— namely, event call-
backs— tightly couple an input event (e.g., mouse clicks, keypresses,
swipe gestures) with the resultant action it triggers (e.g., selecting a
piece on a board game, moving it from one square to another). As a
result, retargeting an interactive application from one modality to
another (e.g., desktop to mobile) or supporting custom interactive
triggers (e.g., keyboard shortcuts) requires significant manual de-
velopment effort. Varv decouples these two pieces: an application

can be defined in an abstract, purely self-contained manner with
custom, semantically-meaningful event names taking the place of
low-level input events (e.g., pieceSelected instead of click). A
subsequent specification then makes this abstract definition more
concrete by binding semantic events to a specific interaction modal-
ity (e.g., pieceSelected is triggered by a tap).

2.2 Language Primitives
Concepts (see Figure 2 C) are Varv’s core building block. They
define individual named units of interactive behavior— for example,
an “item” in a todo list that can be assigned or marked as completed,
or a “piece” that can be moved along the squares of a board game or
jump over other pieces. Each concept comprises a schema S , which
determines the concept’s state (i.e., data), and actions A , which
enumerate the ways this state can change through interaction.
Concepts can be augmented or extended in two ways: additional
specifications can be introduced (e.g., Figure 2b) which reference
an existing concept by name, and extend or override its properties;
or, a variety of extension E operators can be used to define new
concepts from existing parts.

Varv’s concepts combine ideas from several different program-
ming paradigms. At first glance, concepts seemingly map to classes
in object-oriented programming (OOP), offering a mechanism for
modularity, reuse, mixins, and traits. However, Varv’s concepts
make a fundamental departure: concepts are not encapsulated units
(i.e., a concept’s state and actions can be referenced from another).
This design choice emulates the Store design pattern adopted by
many popular JavaScript frontend libraries (e.g., Redux, Vue, and
Svelte). Stores centralize application states, decoupling them from
state transitions to aid rapid prototyping and developing cross-
cutting components. Varv’s unencapsulated concepts retain this
affordance without sacrificing the modularity of OOP classes. We
elaborate on these and other differences between Varv and existing
programming paradigms in subsection 7.3.

2.2.1 Schema. The schema defines the shape and type of data as-
sociated with a concept. The syntax for the schema definition uses
a modified version of JSON Schema [62] and supports a subset of
the JSON Schema functionality. Varv extends JSON Schema with
shorthands, making the language more concise and easier to read
and write. For example, {"label":{"type":"string"}} can be
written as the shorthand {"label":"string"}. Varv concepts can
be referenced directly by name within the schema to specify nested
state. For example, Figure 2 defines the schema of a "todoList"
concept as an array of "todo" concept instances. Varv also supports
deriving properties from existing state by specifying a "derive"
object which expects an array of "properties" that are processed
through an array of "transform" actions. Varv merges the prop-
erties and actions to generate a function that produces the derived
value. For instance, in Figure 2, the "totalCount" property of the
"todoList" concept is calculated as the "length" (a built-in ac-
tion) of the "todos" property.

Early prototypes of Varv did not provide an explicit definition
of concept state. Instead, the state was implicitly created and ma-
nipulated through sequences of actions. However, as we built in-
creasingly complex applications, we discovered that this implicit
treatment reduced visibility [12] into concept state (i.e., it was not

operators can be used to defne new
concepts from existing parts.

Varv’s concepts combine ideas from several diferent program-
ming paradigms. At frst glance, concepts seemingly map to classes
in object-oriented programming (OOP), ofering a mechanism for
modularity, reuse, mixins, and traits. However, Varv’s concepts
make a fundamental departure: concepts are not encapsulated units
(i.e., a concept’s state and actions can be referenced from another).
This design choice emulates the Store design pattern adopted by
many popular JavaScript frontend libraries (e.g., Redux, Vue, and
Svelte). Stores centralize application states, decoupling them from
state transitions to aid rapid prototyping and developing cross-
cutting components. Varv’s unencapsulated concepts retain this
afordance without sacrifcing the modularity of OOP classes. We
elaborate on these and other diferences between Varv and existing
programming paradigms in subsection 7.3.

2.2.1 Schema. The schema defnes the shape and type of data as-
sociated with a concept. The syntax for the schema defnition uses
a modifed version of JSON Schema [62] and supports a subset of
the JSON Schema functionality. Varv extends JSON Schema with
shorthands, making the language more concise and easier to read
and write. For example, {"label":{"type":"string"}} can be
written as the shorthand {"label":"string"}. Varv concepts can
be referenced directly by name within the schema to specify nested
state. For example, Figure 2 defnes the schema of a "todoList"
concept as an array of "todo" concept instances. Varv also supports
deriving properties from existing state by specifying a "derive"
object which expects an array of "properties" that are processed
through an array of "transform" actions. Varv merges the prop-
erties and actions to generate a function that produces the derived
value. For instance, in Figure 2, the "totalCount" property of the
"todoList" concept is calculated as the "length" (a built-in ac-
tion) of the "todos" property.

Early prototypes of Varv did not provide an explicit defnition
of concept state. Instead, the state was implicitly created and ma-
nipulated through sequences of actions. However, as we built in-
creasingly complex applications, we discovered that this implicit
treatment reduced visibility [12] into concept state (i.e., it was not

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Borowski, et al.

W when: [{ action: "toggleCompleted" }}],
T then: [...]

T then: [...]

S schema: {
S todos: { array: "todo" },
S completedCount: "number",
S totalCount: { "number": {
S derive: {
S properties: ["todos"],
S transform: [{ length: "todos" }]
S }
S }}
S },

S schema: { text: "string", completed: "boolean" },

S schema: { assignedTo: "string" }

C concepts: {
C todoList: {

C },
C todo: {

C },
C assignable: {

C }
C }
E extensions: [
E { join: ["todo", "assignable"],
E as: "assignableTodo"
E }
E]

A actions: {
A updateCompletedCount: {

A }
A }

A actions: {
A toggleCompleted: {

A }
A }

(a) A concept defnition that is abstract as it does not reference spe-
cifc interaction modalities.

A actions: {
A toggleCompleted: {

A }
A }

W when: [{ click: { view: todoCheckbox }}]

C concepts: {
C todo: {

C }
C }

(b) Extending the abstract specifcation with concrete references
to modality-specifc input events (the toggleCompleted seman-
tic event, defned in the abstract concept, is triggered when the
todoCheckbox widget is clicked).

Figure 2: The components of a Varv concept defnition for
a simple todo list. As a convention, and to demonstrate the
merging of concept defnitions, we split the defnition into
an abstract and a concrete part. The abstract part provides
defnitions for a todoList, a todo, and an assignable con-
cept

Varv: Reprogrammable Interactive Software as a Declarative Data Structure CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

can facilitate future research on more usable, higher-level systems
for reprogrammable interactive software.

2 THE VARV LANGUAGE
2.1 Design Goals
Varv’s design is motivated by the following three design goals:

Provide a Structured Declarative Representation. Declarative rep-
resentations have become widely adopted in various domains be-
cause they allow users to focus primarily on composing domain-
specific primitives at a higher level of abstraction while deferring
execution concerns to the underlying architecture or runtime [28].
Varv uses declarative language constructs to define application
state and state transitions and provides an execution engine that
parses declarative Varv specifications to produce an interactive
application. Moreover, inspired by declarative representations of
interactive visualizations like Vega [66] and Vega-Lite [65], Varv
embeds its declarative representation of interactive software as
a data structure expressed as JSON. In doing so, Varv lowers the
threshold for programmatically reasoning about the semantics of
interactive software. As a result, it becomes more feasible for the
Varv architecture to hot-swap declarative specifications to enable
live programming and an ecosystem of higher-level development
tools to flourish (akin to the one found around Vega and Vega-
Lite [70, 72, 73]).

Accretive Extensibility. Developers currently rely on extensibility
APIs written by software creators to extend interactive software.
However, such an approach presents a catch-22: it can be difficult,
if not impossible, to customize an application in a particular way
if the creator did not design a corresponding API. In contrast, to
reduce a creator’s burden of explicitly designing for extensibility,
Varv defines interactive applications in terms of individual units
called concepts. To extend a Varv application, a developer need only
add a new specification to the runtime with entries to augment
or override properties of existing concepts or introduce new con-
cepts from a combination of existing parts. Thus, the extensions
are themselves units that layer on top of the base definition of
an application. This incremental approach facilitates experimen-
tation: a developer can safely try implementing new features, or
an end-user can selectively enable or disable extensions without
fear of breaking or changing the original program. Moreover, this
process of extension-by-addition simplifies resolving conflicting ex-
tensions by adding another specification to resolve the conflicting
properties. Hence, our aim is the open authorial principle [7] that
states that program modification should be possible purely through
composition without rewriting existing code.

Decouple Application Logic from Interaction Modality. Existing
methods for specifying interactive behaviors— namely, event call-
backs— tightly couple an input event (e.g., mouse clicks, keypresses,
swipe gestures) with the resultant action it triggers (e.g., selecting a
piece on a board game, moving it from one square to another). As a
result, retargeting an interactive application from one modality to
another (e.g., desktop to mobile) or supporting custom interactive
triggers (e.g., keyboard shortcuts) requires significant manual de-
velopment effort. Varv decouples these two pieces: an application

can be defined in an abstract, purely self-contained manner with
custom, semantically-meaningful event names taking the place of
low-level input events (e.g., pieceSelected instead of click). A
subsequent specification then makes this abstract definition more
concrete by binding semantic events to a specific interaction modal-
ity (e.g., pieceSelected is triggered by a tap).

2.2 Language Primitives
Concepts (see Figure 2 C) are Varv’s core building block. They
define individual named units of interactive behavior— for example,
an “item” in a todo list that can be assigned or marked as completed,
or a “piece” that can be moved along the squares of a board game or
jump over other pieces. Each concept comprises a schema S , which
determines the concept’s state (i.e., data), and actions A , which
enumerate the ways this state can change through interaction.
Concepts can be augmented or extended in two ways: additional
specifications can be introduced (e.g., Figure 2b) which reference
an existing concept by name, and extend or override its properties;
or, a variety of extension E operators can be used to define new
concepts from existing parts.

Varv’s concepts combine ideas from several different program-
ming paradigms. At first glance, concepts seemingly map to classes
in object-oriented programming (OOP), offering a mechanism for
modularity, reuse, mixins, and traits. However, Varv’s concepts
make a fundamental departure: concepts are not encapsulated units
(i.e., a concept’s state and actions can be referenced from another).
This design choice emulates the Store design pattern adopted by
many popular JavaScript frontend libraries (e.g., Redux, Vue, and
Svelte). Stores centralize application states, decoupling them from
state transitions to aid rapid prototyping and developing cross-
cutting components. Varv’s unencapsulated concepts retain this
affordance without sacrificing the modularity of OOP classes. We
elaborate on these and other differences between Varv and existing
programming paradigms in subsection 7.3.

2.2.1 Schema. The schema defines the shape and type of data as-
sociated with a concept. The syntax for the schema definition uses
a modified version of JSON Schema [62] and supports a subset of
the JSON Schema functionality. Varv extends JSON Schema with
shorthands, making the language more concise and easier to read
and write. For example, {"label":{"type":"string"}} can be
written as the shorthand {"label":"string"}. Varv concepts can
be referenced directly by name within the schema to specify nested
state. For example, Figure 2 defines the schema of a "todoList"
concept as an array of "todo" concept instances. Varv also supports
deriving properties from existing state by specifying a "derive"
object which expects an array of "properties" that are processed
through an array of "transform" actions. Varv merges the prop-
erties and actions to generate a function that produces the derived
value. For instance, in Figure 2, the "totalCount" property of the
"todoList" concept is calculated as the "length" (a built-in ac-
tion) of the "todos" property.

Early prototypes of Varv did not provide an explicit definition
of concept state. Instead, the state was implicitly created and ma-
nipulated through sequences of actions. However, as we built in-
creasingly complex applications, we discovered that this implicit
treatment reduced visibility [12] into concept state (i.e., it was not

. Each concept has a schema

Varv: Reprogrammable Interactive Software as a Declarative Data Structure CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

can facilitate future research on more usable, higher-level systems
for reprogrammable interactive software.

2 THE VARV LANGUAGE
2.1 Design Goals
Varv’s design is motivated by the following three design goals:

Provide a Structured Declarative Representation. Declarative rep-
resentations have become widely adopted in various domains be-
cause they allow users to focus primarily on composing domain-
specific primitives at a higher level of abstraction while deferring
execution concerns to the underlying architecture or runtime [28].
Varv uses declarative language constructs to define application
state and state transitions and provides an execution engine that
parses declarative Varv specifications to produce an interactive
application. Moreover, inspired by declarative representations of
interactive visualizations like Vega [66] and Vega-Lite [65], Varv
embeds its declarative representation of interactive software as
a data structure expressed as JSON. In doing so, Varv lowers the
threshold for programmatically reasoning about the semantics of
interactive software. As a result, it becomes more feasible for the
Varv architecture to hot-swap declarative specifications to enable
live programming and an ecosystem of higher-level development
tools to flourish (akin to the one found around Vega and Vega-
Lite [70, 72, 73]).

Accretive Extensibility. Developers currently rely on extensibility
APIs written by software creators to extend interactive software.
However, such an approach presents a catch-22: it can be difficult,
if not impossible, to customize an application in a particular way
if the creator did not design a corresponding API. In contrast, to
reduce a creator’s burden of explicitly designing for extensibility,
Varv defines interactive applications in terms of individual units
called concepts. To extend a Varv application, a developer need only
add a new specification to the runtime with entries to augment
or override properties of existing concepts or introduce new con-
cepts from a combination of existing parts. Thus, the extensions
are themselves units that layer on top of the base definition of
an application. This incremental approach facilitates experimen-
tation: a developer can safely try implementing new features, or
an end-user can selectively enable or disable extensions without
fear of breaking or changing the original program. Moreover, this
process of extension-by-addition simplifies resolving conflicting ex-
tensions by adding another specification to resolve the conflicting
properties. Hence, our aim is the open authorial principle [7] that
states that program modification should be possible purely through
composition without rewriting existing code.

Decouple Application Logic from Interaction Modality. Existing
methods for specifying interactive behaviors— namely, event call-
backs— tightly couple an input event (e.g., mouse clicks, keypresses,
swipe gestures) with the resultant action it triggers (e.g., selecting a
piece on a board game, moving it from one square to another). As a
result, retargeting an interactive application from one modality to
another (e.g., desktop to mobile) or supporting custom interactive
triggers (e.g., keyboard shortcuts) requires significant manual de-
velopment effort. Varv decouples these two pieces: an application

can be defined in an abstract, purely self-contained manner with
custom, semantically-meaningful event names taking the place of
low-level input events (e.g., pieceSelected instead of click). A
subsequent specification then makes this abstract definition more
concrete by binding semantic events to a specific interaction modal-
ity (e.g., pieceSelected is triggered by a tap).

2.2 Language Primitives
Concepts (see Figure 2 C) are Varv’s core building block. They
define individual named units of interactive behavior— for example,
an “item” in a todo list that can be assigned or marked as completed,
or a “piece” that can be moved along the squares of a board game or
jump over other pieces. Each concept comprises a schema S , which
determines the concept’s state (i.e., data), and actions A , which
enumerate the ways this state can change through interaction.
Concepts can be augmented or extended in two ways: additional
specifications can be introduced (e.g., Figure 2b) which reference
an existing concept by name, and extend or override its properties;
or, a variety of extension E operators can be used to define new
concepts from existing parts.

Varv’s concepts combine ideas from several different program-
ming paradigms. At first glance, concepts seemingly map to classes
in object-oriented programming (OOP), offering a mechanism for
modularity, reuse, mixins, and traits. However, Varv’s concepts
make a fundamental departure: concepts are not encapsulated units
(i.e., a concept’s state and actions can be referenced from another).
This design choice emulates the Store design pattern adopted by
many popular JavaScript frontend libraries (e.g., Redux, Vue, and
Svelte). Stores centralize application states, decoupling them from
state transitions to aid rapid prototyping and developing cross-
cutting components. Varv’s unencapsulated concepts retain this
affordance without sacrificing the modularity of OOP classes. We
elaborate on these and other differences between Varv and existing
programming paradigms in subsection 7.3.

2.2.1 Schema. The schema defines the shape and type of data as-
sociated with a concept. The syntax for the schema definition uses
a modified version of JSON Schema [62] and supports a subset of
the JSON Schema functionality. Varv extends JSON Schema with
shorthands, making the language more concise and easier to read
and write. For example, {"label":{"type":"string"}} can be
written as the shorthand {"label":"string"}. Varv concepts can
be referenced directly by name within the schema to specify nested
state. For example, Figure 2 defines the schema of a "todoList"
concept as an array of "todo" concept instances. Varv also supports
deriving properties from existing state by specifying a "derive"
object which expects an array of "properties" that are processed
through an array of "transform" actions. Varv merges the prop-
erties and actions to generate a function that produces the derived
value. For instance, in Figure 2, the "totalCount" property of the
"todoList" concept is calculated as the "length" (a built-in ac-
tion) of the "todos" property.

Early prototypes of Varv did not provide an explicit definition
of concept state. Instead, the state was implicitly created and ma-
nipulated through sequences of actions. However, as we built in-
creasingly complex applications, we discovered that this implicit
treatment reduced visibility [12] into concept state (i.e., it was not

and the todo concept
has an action

Varv: Reprogrammable Interactive Software as a Declarative Data Structure CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

can facilitate future research on more usable, higher-level systems
for reprogrammable interactive software.

2 THE VARV LANGUAGE
2.1 Design Goals
Varv’s design is motivated by the following three design goals:

Provide a Structured Declarative Representation. Declarative rep-
resentations have become widely adopted in various domains be-
cause they allow users to focus primarily on composing domain-
specific primitives at a higher level of abstraction while deferring
execution concerns to the underlying architecture or runtime [28].
Varv uses declarative language constructs to define application
state and state transitions and provides an execution engine that
parses declarative Varv specifications to produce an interactive
application. Moreover, inspired by declarative representations of
interactive visualizations like Vega [66] and Vega-Lite [65], Varv
embeds its declarative representation of interactive software as
a data structure expressed as JSON. In doing so, Varv lowers the
threshold for programmatically reasoning about the semantics of
interactive software. As a result, it becomes more feasible for the
Varv architecture to hot-swap declarative specifications to enable
live programming and an ecosystem of higher-level development
tools to flourish (akin to the one found around Vega and Vega-
Lite [70, 72, 73]).

Accretive Extensibility. Developers currently rely on extensibility
APIs written by software creators to extend interactive software.
However, such an approach presents a catch-22: it can be difficult,
if not impossible, to customize an application in a particular way
if the creator did not design a corresponding API. In contrast, to
reduce a creator’s burden of explicitly designing for extensibility,
Varv defines interactive applications in terms of individual units
called concepts. To extend a Varv application, a developer need only
add a new specification to the runtime with entries to augment
or override properties of existing concepts or introduce new con-
cepts from a combination of existing parts. Thus, the extensions
are themselves units that layer on top of the base definition of
an application. This incremental approach facilitates experimen-
tation: a developer can safely try implementing new features, or
an end-user can selectively enable or disable extensions without
fear of breaking or changing the original program. Moreover, this
process of extension-by-addition simplifies resolving conflicting ex-
tensions by adding another specification to resolve the conflicting
properties. Hence, our aim is the open authorial principle [7] that
states that program modification should be possible purely through
composition without rewriting existing code.

Decouple Application Logic from Interaction Modality. Existing
methods for specifying interactive behaviors— namely, event call-
backs— tightly couple an input event (e.g., mouse clicks, keypresses,
swipe gestures) with the resultant action it triggers (e.g., selecting a
piece on a board game, moving it from one square to another). As a
result, retargeting an interactive application from one modality to
another (e.g., desktop to mobile) or supporting custom interactive
triggers (e.g., keyboard shortcuts) requires significant manual de-
velopment effort. Varv decouples these two pieces: an application

can be defined in an abstract, purely self-contained manner with
custom, semantically-meaningful event names taking the place of
low-level input events (e.g., pieceSelected instead of click). A
subsequent specification then makes this abstract definition more
concrete by binding semantic events to a specific interaction modal-
ity (e.g., pieceSelected is triggered by a tap).

2.2 Language Primitives
Concepts (see Figure 2 C) are Varv’s core building block. They
define individual named units of interactive behavior— for example,
an “item” in a todo list that can be assigned or marked as completed,
or a “piece” that can be moved along the squares of a board game or
jump over other pieces. Each concept comprises a schema S , which
determines the concept’s state (i.e., data), and actions A , which
enumerate the ways this state can change through interaction.
Concepts can be augmented or extended in two ways: additional
specifications can be introduced (e.g., Figure 2b) which reference
an existing concept by name, and extend or override its properties;
or, a variety of extension E operators can be used to define new
concepts from existing parts.

Varv’s concepts combine ideas from several different program-
ming paradigms. At first glance, concepts seemingly map to classes
in object-oriented programming (OOP), offering a mechanism for
modularity, reuse, mixins, and traits. However, Varv’s concepts
make a fundamental departure: concepts are not encapsulated units
(i.e., a concept’s state and actions can be referenced from another).
This design choice emulates the Store design pattern adopted by
many popular JavaScript frontend libraries (e.g., Redux, Vue, and
Svelte). Stores centralize application states, decoupling them from
state transitions to aid rapid prototyping and developing cross-
cutting components. Varv’s unencapsulated concepts retain this
affordance without sacrificing the modularity of OOP classes. We
elaborate on these and other differences between Varv and existing
programming paradigms in subsection 7.3.

2.2.1 Schema. The schema defines the shape and type of data as-
sociated with a concept. The syntax for the schema definition uses
a modified version of JSON Schema [62] and supports a subset of
the JSON Schema functionality. Varv extends JSON Schema with
shorthands, making the language more concise and easier to read
and write. For example, {"label":{"type":"string"}} can be
written as the shorthand {"label":"string"}. Varv concepts can
be referenced directly by name within the schema to specify nested
state. For example, Figure 2 defines the schema of a "todoList"
concept as an array of "todo" concept instances. Varv also supports
deriving properties from existing state by specifying a "derive"
object which expects an array of "properties" that are processed
through an array of "transform" actions. Varv merges the prop-
erties and actions to generate a function that produces the derived
value. For instance, in Figure 2, the "totalCount" property of the
"todoList" concept is calculated as the "length" (a built-in ac-
tion) of the "todos" property.

Early prototypes of Varv did not provide an explicit definition
of concept state. Instead, the state was implicitly created and ma-
nipulated through sequences of actions. However, as we built in-
creasingly complex applications, we discovered that this implicit
treatment reduced visibility [12] into concept state (i.e., it was not

which encodes a state transition (omitted)
in a then-block

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Borowski, et al.

W when: [{ action: "toggleCompleted" }}],
T then: [...]

T then: [...]

S schema: {
S todos: { array: "todo" },
S completedCount: "number",
S totalCount: { "number": {
S derive: {
S properties: ["todos"],
S transform: [{ length: "todos" }]
S }
S }}
S },

S schema: { text: "string", completed: "boolean" },

S schema: { assignedTo: "string" }

C concepts: {
C todoList: {

C },
C todo: {

C },
C assignable: {

C }
C }
E extensions: [
E { join: ["todo", "assignable"],
E as: "assignableTodo"
E }
E]

A actions: {
A updateCompletedCount: {

A }
A }

A actions: {
A toggleCompleted: {

A }
A }

(a) A concept definition that is abstract as it does not reference spe-
cific interaction modalities.

A actions: {
A toggleCompleted: {

A }
A }

W when: [{ click: { view: todoCheckbox }}]

C concepts: {
C todo: {

C }
C }

(b) Extending the abstract specification with concrete references
to modality-specific input events (the toggleCompleted seman-
tic event, defined in the abstract concept, is triggered when the
todoCheckbox widget is clicked).

Figure 2: The components of a Varv concept definition for
a simple todo list. As a convention, and to demonstrate the
merging of concept definitions, we split the definition into
an abstract and a concrete part. The abstract part provides
definitions for a todoList, a todo, and an assignable con-
cept C . Each concept has a schema S and the todo concept
has an action A which encodes a state transition (omitted)
in a then-block T . An extension E is used to create an assign-
able todo by joining the todo and assignable concepts. The
concrete part binds the toggleCompleted action to an inter-
action specific to a DOM view using a when-block W . (Quota-
tion marks from JSON keys removed for readability.)

clear what properties were available for access on a given concept).
In contrast, by explicitly enumerating a concept’s properties and
their types, Varv schemas help formalize concept state. They serve
as a baseline level of documentation for the structure of concepts
within the program, and types are validated at runtime to reduce
error-proneness [12]. Schemas, moreover, aid concept reusability.
For instance, in early prototypes, Varv stored concept state directly
on DOM nodes. This approach introduced hidden dependencies [12],
making it challenging to adapt concepts to new contexts without
introducing knock-on effects to the output interface. It, similarly,
introduced a premature commitment [12] by requiring every con-
cept to be reified as an interface element. In contrast, with schemas,
concepts can be reasoned about in purely abstract ways and refer-
enced throughout a declarative specification without being mapped
to a concrete user interface component.

2.2.2 Actions and Triggers. Actions provide a common abstraction
for specifying state transformations, and consist of two parts: an
optional when-block W and, a required then-block T .

The when-block defines an array of triggers or events that cause
the action to be executed. Varv provides two types of triggers (see
Appendix C). Reactive triggers govern concept space: they fire
when a concept’s state changes, or when a concept’s action finishes
executing, or at a given interval. For instance, in Figure 2a, the
updateCompleteCount action makes use of a reactive trigger—
this action executes once the toggleCompleted action of the todo
concept has run to completion. View triggers, on the other hand,
fire when input events (e.g., mouse clicks or key presses) occur. For
example, Figure 2b demonstrates how an additional specification
can bind purely abstract concrete definitions to concrete interface
elements using view triggers— the toggleCompleted action of the
todo concept fires when the todoCheckbox element is clicked.

The then-block specifies an array of actions that should be exe-
cuted. Nested actions can include either other concept actions or
Varv’s primitive low-level actions (see Appendix B). These built-in
actions include operations for manipulating a concept’s state (e.g.,
arithmetic calculations, string and array manipulations, etc.) as well
as determining control flow (e.g., early exiting a chain of actions,
or forking the chain to execute an independent action). This design
allows for recursion (i.e., an action can call itself within the then-
block), with a "where" control flow action used to indicate the ter-
minating condition. The output of an action can be referenced using
the dollar sign— by default, the output is named for the action (e.g.,
$length references the output of an upstream "length" action) but
these variables can be renamed using the "as" property offered on
many actions. Finally, actions can be parameterized using the using
the @-symbol in front of parameter names, e.g., "@newTodoLabel".
These parameters can subsequently be provided as properties when
referencing the action downstream. The addNewTodo action shown
in Appendix A.1 provides a complete example of these ideas. When
it is executed, it creates a "new" instance of the todo concept using
the value provided by the newTodoLabel parameter (populated on
line 45). The output of this action is stored in the $newTodo vari-
able (due to the "as" property specified on line 25), and is used to
append to the list of todos.

Concept actions do not need to define both blocks. Rather, con-
cept actions can be directly defined as a then-block (bypassing

. An extension

Varv: Reprogrammable Interactive Software as a Declarative Data Structure CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

can facilitate future research on more usable, higher-level systems
for reprogrammable interactive software.

2 THE VARV LANGUAGE
2.1 Design Goals
Varv’s design is motivated by the following three design goals:

Provide a Structured Declarative Representation. Declarative rep-
resentations have become widely adopted in various domains be-
cause they allow users to focus primarily on composing domain-
specific primitives at a higher level of abstraction while deferring
execution concerns to the underlying architecture or runtime [28].
Varv uses declarative language constructs to define application
state and state transitions and provides an execution engine that
parses declarative Varv specifications to produce an interactive
application. Moreover, inspired by declarative representations of
interactive visualizations like Vega [66] and Vega-Lite [65], Varv
embeds its declarative representation of interactive software as
a data structure expressed as JSON. In doing so, Varv lowers the
threshold for programmatically reasoning about the semantics of
interactive software. As a result, it becomes more feasible for the
Varv architecture to hot-swap declarative specifications to enable
live programming and an ecosystem of higher-level development
tools to flourish (akin to the one found around Vega and Vega-
Lite [70, 72, 73]).

Accretive Extensibility. Developers currently rely on extensibility
APIs written by software creators to extend interactive software.
However, such an approach presents a catch-22: it can be difficult,
if not impossible, to customize an application in a particular way
if the creator did not design a corresponding API. In contrast, to
reduce a creator’s burden of explicitly designing for extensibility,
Varv defines interactive applications in terms of individual units
called concepts. To extend a Varv application, a developer need only
add a new specification to the runtime with entries to augment
or override properties of existing concepts or introduce new con-
cepts from a combination of existing parts. Thus, the extensions
are themselves units that layer on top of the base definition of
an application. This incremental approach facilitates experimen-
tation: a developer can safely try implementing new features, or
an end-user can selectively enable or disable extensions without
fear of breaking or changing the original program. Moreover, this
process of extension-by-addition simplifies resolving conflicting ex-
tensions by adding another specification to resolve the conflicting
properties. Hence, our aim is the open authorial principle [7] that
states that program modification should be possible purely through
composition without rewriting existing code.

Decouple Application Logic from Interaction Modality. Existing
methods for specifying interactive behaviors— namely, event call-
backs— tightly couple an input event (e.g., mouse clicks, keypresses,
swipe gestures) with the resultant action it triggers (e.g., selecting a
piece on a board game, moving it from one square to another). As a
result, retargeting an interactive application from one modality to
another (e.g., desktop to mobile) or supporting custom interactive
triggers (e.g., keyboard shortcuts) requires significant manual de-
velopment effort. Varv decouples these two pieces: an application

can be defined in an abstract, purely self-contained manner with
custom, semantically-meaningful event names taking the place of
low-level input events (e.g., pieceSelected instead of click). A
subsequent specification then makes this abstract definition more
concrete by binding semantic events to a specific interaction modal-
ity (e.g., pieceSelected is triggered by a tap).

2.2 Language Primitives
Concepts (see Figure 2 C) are Varv’s core building block. They
define individual named units of interactive behavior— for example,
an “item” in a todo list that can be assigned or marked as completed,
or a “piece” that can be moved along the squares of a board game or
jump over other pieces. Each concept comprises a schema S , which
determines the concept’s state (i.e., data), and actions A , which
enumerate the ways this state can change through interaction.
Concepts can be augmented or extended in two ways: additional
specifications can be introduced (e.g., Figure 2b) which reference
an existing concept by name, and extend or override its properties;
or, a variety of extension E operators can be used to define new
concepts from existing parts.

Varv’s concepts combine ideas from several different program-
ming paradigms. At first glance, concepts seemingly map to classes
in object-oriented programming (OOP), offering a mechanism for
modularity, reuse, mixins, and traits. However, Varv’s concepts
make a fundamental departure: concepts are not encapsulated units
(i.e., a concept’s state and actions can be referenced from another).
This design choice emulates the Store design pattern adopted by
many popular JavaScript frontend libraries (e.g., Redux, Vue, and
Svelte). Stores centralize application states, decoupling them from
state transitions to aid rapid prototyping and developing cross-
cutting components. Varv’s unencapsulated concepts retain this
affordance without sacrificing the modularity of OOP classes. We
elaborate on these and other differences between Varv and existing
programming paradigms in subsection 7.3.

2.2.1 Schema. The schema defines the shape and type of data as-
sociated with a concept. The syntax for the schema definition uses
a modified version of JSON Schema [62] and supports a subset of
the JSON Schema functionality. Varv extends JSON Schema with
shorthands, making the language more concise and easier to read
and write. For example, {"label":{"type":"string"}} can be
written as the shorthand {"label":"string"}. Varv concepts can
be referenced directly by name within the schema to specify nested
state. For example, Figure 2 defines the schema of a "todoList"
concept as an array of "todo" concept instances. Varv also supports
deriving properties from existing state by specifying a "derive"
object which expects an array of "properties" that are processed
through an array of "transform" actions. Varv merges the prop-
erties and actions to generate a function that produces the derived
value. For instance, in Figure 2, the "totalCount" property of the
"todoList" concept is calculated as the "length" (a built-in ac-
tion) of the "todos" property.

Early prototypes of Varv did not provide an explicit definition
of concept state. Instead, the state was implicitly created and ma-
nipulated through sequences of actions. However, as we built in-
creasingly complex applications, we discovered that this implicit
treatment reduced visibility [12] into concept state (i.e., it was not

is used to create an assign-
able todo by joining the todo and assignable concepts. The
concrete part binds the toggleCompleted action to an inter-
action specifc to a DOM view using a when-block

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Borowski, et al.

W when: [{ action: "toggleCompleted" }}],
T then: [...]

T then: [...]

S schema: {
S todos: { array: "todo" },
S completedCount: "number",
S totalCount: { "number": {
S derive: {
S properties: ["todos"],
S transform: [{ length: "todos" }]
S }
S }}
S },

S schema: { text: "string", completed: "boolean" },

S schema: { assignedTo: "string" }

C concepts: {
C todoList: {

C },
C todo: {

C },
C assignable: {

C }
C }
E extensions: [
E { join: ["todo", "assignable"],
E as: "assignableTodo"
E }
E]

A actions: {
A updateCompletedCount: {

A }
A }

A actions: {
A toggleCompleted: {

A }
A }

(a) A concept definition that is abstract as it does not reference spe-
cific interaction modalities.

A actions: {
A toggleCompleted: {

A }
A }

W when: [{ click: { view: todoCheckbox }}]

C concepts: {
C todo: {

C }
C }

(b) Extending the abstract specification with concrete references
to modality-specific input events (the toggleCompleted seman-
tic event, defined in the abstract concept, is triggered when the
todoCheckbox widget is clicked).

Figure 2: The components of a Varv concept definition for
a simple todo list. As a convention, and to demonstrate the
merging of concept definitions, we split the definition into
an abstract and a concrete part. The abstract part provides
definitions for a todoList, a todo, and an assignable con-
cept C . Each concept has a schema S and the todo concept
has an action A which encodes a state transition (omitted)
in a then-block T . An extension E is used to create an assign-
able todo by joining the todo and assignable concepts. The
concrete part binds the toggleCompleted action to an inter-
action specific to a DOM view using a when-block W . (Quota-
tion marks from JSON keys removed for readability.)

clear what properties were available for access on a given concept).
In contrast, by explicitly enumerating a concept’s properties and
their types, Varv schemas help formalize concept state. They serve
as a baseline level of documentation for the structure of concepts
within the program, and types are validated at runtime to reduce
error-proneness [12]. Schemas, moreover, aid concept reusability.
For instance, in early prototypes, Varv stored concept state directly
on DOM nodes. This approach introduced hidden dependencies [12],
making it challenging to adapt concepts to new contexts without
introducing knock-on effects to the output interface. It, similarly,
introduced a premature commitment [12] by requiring every con-
cept to be reified as an interface element. In contrast, with schemas,
concepts can be reasoned about in purely abstract ways and refer-
enced throughout a declarative specification without being mapped
to a concrete user interface component.

2.2.2 Actions and Triggers. Actions provide a common abstraction
for specifying state transformations, and consist of two parts: an
optional when-block W and, a required then-block T .

The when-block defines an array of triggers or events that cause
the action to be executed. Varv provides two types of triggers (see
Appendix C). Reactive triggers govern concept space: they fire
when a concept’s state changes, or when a concept’s action finishes
executing, or at a given interval. For instance, in Figure 2a, the
updateCompleteCount action makes use of a reactive trigger—
this action executes once the toggleCompleted action of the todo
concept has run to completion. View triggers, on the other hand,
fire when input events (e.g., mouse clicks or key presses) occur. For
example, Figure 2b demonstrates how an additional specification
can bind purely abstract concrete definitions to concrete interface
elements using view triggers— the toggleCompleted action of the
todo concept fires when the todoCheckbox element is clicked.

The then-block specifies an array of actions that should be exe-
cuted. Nested actions can include either other concept actions or
Varv’s primitive low-level actions (see Appendix B). These built-in
actions include operations for manipulating a concept’s state (e.g.,
arithmetic calculations, string and array manipulations, etc.) as well
as determining control flow (e.g., early exiting a chain of actions,
or forking the chain to execute an independent action). This design
allows for recursion (i.e., an action can call itself within the then-
block), with a "where" control flow action used to indicate the ter-
minating condition. The output of an action can be referenced using
the dollar sign— by default, the output is named for the action (e.g.,
$length references the output of an upstream "length" action) but
these variables can be renamed using the "as" property offered on
many actions. Finally, actions can be parameterized using the using
the @-symbol in front of parameter names, e.g., "@newTodoLabel".
These parameters can subsequently be provided as properties when
referencing the action downstream. The addNewTodo action shown
in Appendix A.1 provides a complete example of these ideas. When
it is executed, it creates a "new" instance of the todo concept using
the value provided by the newTodoLabel parameter (populated on
line 45). The output of this action is stored in the $newTodo vari-
able (due to the "as" property specified on line 25), and is used to
append to the list of todos.

Concept actions do not need to define both blocks. Rather, con-
cept actions can be directly defined as a then-block (bypassing

. (Quota-
tion marks from JSON keys removed for readability.)

clear what properties were available for access on a given concept).
In contrast, by explicitly enumerating a concept’s properties and
their types, Varv schemas help formalize concept state. They serve
as a baseline level of documentation for the structure of concepts
within the program, and types are validated at runtime to reduce
error-proneness [12]. Schemas, moreover, aid concept reusability.
For instance, in early prototypes, Varv stored concept state directly
on DOM nodes. This approach introduced hidden dependencies [12],
making it challenging to adapt concepts to new contexts without
introducing knock-on efects to the output interface. It, similarly,
introduced a premature commitment [12] by requiring every con-
cept to be reifed as an interface element. In contrast, with schemas,
concepts can be reasoned about in purely abstract ways and refer-
enced throughout a declarative specifcation without being mapped
to a concrete user interface component.

2.2.2 Actions and Triggers. Actions provide a common abstraction
for specifying state transformations, and consist of two parts: an
optional when-block

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Borowski, et al.

W when: [{ action: "toggleCompleted" }}],
T then: [...]

T then: [...]

S schema: {
S todos: { array: "todo" },
S completedCount: "number",
S totalCount: { "number": {
S derive: {
S properties: ["todos"],
S transform: [{ length: "todos" }]
S }
S }}
S },

S schema: { text: "string", completed: "boolean" },

S schema: { assignedTo: "string" }

C concepts: {
C todoList: {

C },
C todo: {

C },
C assignable: {

C }
C }
E extensions: [
E { join: ["todo", "assignable"],
E as: "assignableTodo"
E }
E]

A actions: {
A updateCompletedCount: {

A }
A }

A actions: {
A toggleCompleted: {

A }
A }

(a) A concept definition that is abstract as it does not reference spe-
cific interaction modalities.

A actions: {
A toggleCompleted: {

A }
A }

W when: [{ click: { view: todoCheckbox }}]

C concepts: {
C todo: {

C }
C }

(b) Extending the abstract specification with concrete references
to modality-specific input events (the toggleCompleted seman-
tic event, defined in the abstract concept, is triggered when the
todoCheckbox widget is clicked).

Figure 2: The components of a Varv concept definition for
a simple todo list. As a convention, and to demonstrate the
merging of concept definitions, we split the definition into
an abstract and a concrete part. The abstract part provides
definitions for a todoList, a todo, and an assignable con-
cept C . Each concept has a schema S and the todo concept
has an action A which encodes a state transition (omitted)
in a then-block T . An extension E is used to create an assign-
able todo by joining the todo and assignable concepts. The
concrete part binds the toggleCompleted action to an inter-
action specific to a DOM view using a when-block W . (Quota-
tion marks from JSON keys removed for readability.)

clear what properties were available for access on a given concept).
In contrast, by explicitly enumerating a concept’s properties and
their types, Varv schemas help formalize concept state. They serve
as a baseline level of documentation for the structure of concepts
within the program, and types are validated at runtime to reduce
error-proneness [12]. Schemas, moreover, aid concept reusability.
For instance, in early prototypes, Varv stored concept state directly
on DOM nodes. This approach introduced hidden dependencies [12],
making it challenging to adapt concepts to new contexts without
introducing knock-on effects to the output interface. It, similarly,
introduced a premature commitment [12] by requiring every con-
cept to be reified as an interface element. In contrast, with schemas,
concepts can be reasoned about in purely abstract ways and refer-
enced throughout a declarative specification without being mapped
to a concrete user interface component.

2.2.2 Actions and Triggers. Actions provide a common abstraction
for specifying state transformations, and consist of two parts: an
optional when-block W and, a required then-block T .

The when-block defines an array of triggers or events that cause
the action to be executed. Varv provides two types of triggers (see
Appendix C). Reactive triggers govern concept space: they fire
when a concept’s state changes, or when a concept’s action finishes
executing, or at a given interval. For instance, in Figure 2a, the
updateCompleteCount action makes use of a reactive trigger—
this action executes once the toggleCompleted action of the todo
concept has run to completion. View triggers, on the other hand,
fire when input events (e.g., mouse clicks or key presses) occur. For
example, Figure 2b demonstrates how an additional specification
can bind purely abstract concrete definitions to concrete interface
elements using view triggers— the toggleCompleted action of the
todo concept fires when the todoCheckbox element is clicked.

The then-block specifies an array of actions that should be exe-
cuted. Nested actions can include either other concept actions or
Varv’s primitive low-level actions (see Appendix B). These built-in
actions include operations for manipulating a concept’s state (e.g.,
arithmetic calculations, string and array manipulations, etc.) as well
as determining control flow (e.g., early exiting a chain of actions,
or forking the chain to execute an independent action). This design
allows for recursion (i.e., an action can call itself within the then-
block), with a "where" control flow action used to indicate the ter-
minating condition. The output of an action can be referenced using
the dollar sign— by default, the output is named for the action (e.g.,
$length references the output of an upstream "length" action) but
these variables can be renamed using the "as" property offered on
many actions. Finally, actions can be parameterized using the using
the @-symbol in front of parameter names, e.g., "@newTodoLabel".
These parameters can subsequently be provided as properties when
referencing the action downstream. The addNewTodo action shown
in Appendix A.1 provides a complete example of these ideas. When
it is executed, it creates a "new" instance of the todo concept using
the value provided by the newTodoLabel parameter (populated on
line 45). The output of this action is stored in the $newTodo vari-
able (due to the "as" property specified on line 25), and is used to
append to the list of todos.

Concept actions do not need to define both blocks. Rather, con-
cept actions can be directly defined as a then-block (bypassing

and, a required then-block

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Borowski, et al.

W when: [{ action: "toggleCompleted" }}],
T then: [...]

T then: [...]

S schema: {
S todos: { array: "todo" },
S completedCount: "number",
S totalCount: { "number": {
S derive: {
S properties: ["todos"],
S transform: [{ length: "todos" }]
S }
S }}
S },

S schema: { text: "string", completed: "boolean" },

S schema: { assignedTo: "string" }

C concepts: {
C todoList: {

C },
C todo: {

C },
C assignable: {

C }
C }
E extensions: [
E { join: ["todo", "assignable"],
E as: "assignableTodo"
E }
E]

A actions: {
A updateCompletedCount: {

A }
A }

A actions: {
A toggleCompleted: {

A }
A }

(a) A concept definition that is abstract as it does not reference spe-
cific interaction modalities.

A actions: {
A toggleCompleted: {

A }
A }

W when: [{ click: { view: todoCheckbox }}]

C concepts: {
C todo: {

C }
C }

(b) Extending the abstract specification with concrete references
to modality-specific input events (the toggleCompleted seman-
tic event, defined in the abstract concept, is triggered when the
todoCheckbox widget is clicked).

Figure 2: The components of a Varv concept definition for
a simple todo list. As a convention, and to demonstrate the
merging of concept definitions, we split the definition into
an abstract and a concrete part. The abstract part provides
definitions for a todoList, a todo, and an assignable con-
cept C . Each concept has a schema S and the todo concept
has an action A which encodes a state transition (omitted)
in a then-block T . An extension E is used to create an assign-
able todo by joining the todo and assignable concepts. The
concrete part binds the toggleCompleted action to an inter-
action specific to a DOM view using a when-block W . (Quota-
tion marks from JSON keys removed for readability.)

clear what properties were available for access on a given concept).
In contrast, by explicitly enumerating a concept’s properties and
their types, Varv schemas help formalize concept state. They serve
as a baseline level of documentation for the structure of concepts
within the program, and types are validated at runtime to reduce
error-proneness [12]. Schemas, moreover, aid concept reusability.
For instance, in early prototypes, Varv stored concept state directly
on DOM nodes. This approach introduced hidden dependencies [12],
making it challenging to adapt concepts to new contexts without
introducing knock-on effects to the output interface. It, similarly,
introduced a premature commitment [12] by requiring every con-
cept to be reified as an interface element. In contrast, with schemas,
concepts can be reasoned about in purely abstract ways and refer-
enced throughout a declarative specification without being mapped
to a concrete user interface component.

2.2.2 Actions and Triggers. Actions provide a common abstraction
for specifying state transformations, and consist of two parts: an
optional when-block W and, a required then-block T .

The when-block defines an array of triggers or events that cause
the action to be executed. Varv provides two types of triggers (see
Appendix C). Reactive triggers govern concept space: they fire
when a concept’s state changes, or when a concept’s action finishes
executing, or at a given interval. For instance, in Figure 2a, the
updateCompleteCount action makes use of a reactive trigger—
this action executes once the toggleCompleted action of the todo
concept has run to completion. View triggers, on the other hand,
fire when input events (e.g., mouse clicks or key presses) occur. For
example, Figure 2b demonstrates how an additional specification
can bind purely abstract concrete definitions to concrete interface
elements using view triggers— the toggleCompleted action of the
todo concept fires when the todoCheckbox element is clicked.

The then-block specifies an array of actions that should be exe-
cuted. Nested actions can include either other concept actions or
Varv’s primitive low-level actions (see Appendix B). These built-in
actions include operations for manipulating a concept’s state (e.g.,
arithmetic calculations, string and array manipulations, etc.) as well
as determining control flow (e.g., early exiting a chain of actions,
or forking the chain to execute an independent action). This design
allows for recursion (i.e., an action can call itself within the then-
block), with a "where" control flow action used to indicate the ter-
minating condition. The output of an action can be referenced using
the dollar sign— by default, the output is named for the action (e.g.,
$length references the output of an upstream "length" action) but
these variables can be renamed using the "as" property offered on
many actions. Finally, actions can be parameterized using the using
the @-symbol in front of parameter names, e.g., "@newTodoLabel".
These parameters can subsequently be provided as properties when
referencing the action downstream. The addNewTodo action shown
in Appendix A.1 provides a complete example of these ideas. When
it is executed, it creates a "new" instance of the todo concept using
the value provided by the newTodoLabel parameter (populated on
line 45). The output of this action is stored in the $newTodo vari-
able (due to the "as" property specified on line 25), and is used to
append to the list of todos.

Concept actions do not need to define both blocks. Rather, con-
cept actions can be directly defined as a then-block (bypassing

.
The when-block defnes an array of triggers or events that cause

the action to be executed. Varv provides two types of triggers (see
Appendix C). Reactive triggers govern concept space: they fre
when a concept’s state changes, or when a concept’s action fnishes
executing, or at a given interval. For instance, in Figure 2a, the
updateCompleteCount action makes use of a reactive trigger —
this action executes once the toggleCompleted action of the todo
concept has run to completion. View triggers, on the other hand,
fre when input events (e.g., mouse clicks or key presses) occur. For
example, Figure 2b demonstrates how an additional specifcation
can bind purely abstract concrete defnitions to concrete interface
elements using view triggers — the toggleCompleted action of the
todo concept fres when the todoCheckbox element is clicked.

The then-block specifes an array of actions that should be exe-
cuted. Nested actions can include either other concept actions or
Varv’s primitive low-level actions (see Appendix B). These built-in
actions include operations for manipulating a concept’s state (e.g.,
arithmetic calculations, string and array manipulations, etc.) as well
as determining control fow (e.g., early exiting a chain of actions,
or forking the chain to execute an independent action). This design
allows for recursion (i.e., an action can call itself within the then-
block), with a "where" control fow action used to indicate the ter-
minating condition. The output of an action can be referenced using
the dollar sign — by default, the output is named for the action (e.g.,
$length references the output of an upstream "length" action) but
these variables can be renamed using the "as" property ofered on
many actions. Finally, actions can be parameterized using the using
the @-symbol in front of parameter names, e.g., "@newTodoLabel".
These parameters can subsequently be provided as properties when
referencing the action downstream. The addNewTodo action shown
in Appendix A.1 provides a complete example of these ideas. When
it is executed, it creates a "new" instance of the todo concept using
the value provided by the newTodoLabel parameter (populated on
line 45). The output of this action is stored in the $newTodo vari-
able (due to the "as" property specifed on line 25), and is used to
append to the list of todos.

Concept actions do not need to defne both blocks. Rather, con-
cept actions can be directly defned as a then-block (bypassing

Varv: Reprogrammable Interactive Sofware as a Declarative Data Structure CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

the nested format) and additional, separate specifcations can later
bind actions to specifc interface elements. For example, Figure 2
uses this convention to frst defne the abstract idea of a todoList
comprised of todos which can be completed (Figure 2a). Note,
the toggleCompleted action does not defne a when-block. In a
subsequent specifcation (Figure 2b), this action is bound to click
events that occur on the todoCheckbox element. By following this
convention, a concept action can serve as an abstraction for a se-
quence of nested actions, and helps decouple the application logic
of an interactive component from a specifc reifcation or modality.

Varv also allows users to register custom actions written in
JavaScript (see Appendix A.4). Custom actions can extend the Varv
standard library with additional functionality, integrate Varv with
existing JavaScript code, or let users write complex business logic
using imperative code.

2.2.3 Extensions. Extensions are mechanisms that enable the reuse
of concepts. Out of the box, Varv supports merging and overwriting
properties using naive declaration merging based on JSON keys.
Figure 2 uses declaration merging to extend the toggleCompleted
action on the todo concept with a when-block. However, during
our prototyping process, we quickly realized that naive declara-
tion merging is limited to only extending or overwriting existing
concepts. In particular, there is no way to use naive declaration
merging to build higher-level concepts that are ad hoc compositions
of existing concepts.

To support more nuanced mechanisms for concept reuse, Varv
ofers four extension operators: "inject", "join", "omit", and
"pick". "inject" merges the defnition of one or more source
concepts into another target concept. The source concepts are left
unaltered while the target concept gains new functionality. The
"join" operator is similar to "inject" but merges one or more
source concepts to create a new concept, leaving source concepts
unaltered. The "omit" operator takes a source concept and can
remove actions and schema from the concept, altering the source
concept, providing a mechanism to remove functionality via ad-
dition. The "pick" operator takes a source concept and selects a
subset of the schema and actions to create a new target concept,
leaving the source concept unaltered. Using these four operators,
users can defne a library of concepts as mixins and inject them
into other concepts to prototype applications rapidly.

2.3 Event Flow
Varv is an reactive and event-based system. Events in Varv are data
objects that are used to transfer information. Events are emitted
from triggers, passed on to actions, and then terminate once an
action is performed.

2.3.1 Event Contexts. Events contain contexts and shared variables
(see Figure 3). A context is also a data object that consists of a
concept instance, the target, and variables in the context. The target
is required by many actions to defne on which concept instance
an action should work. For example, consider a todo concept that
contains the string property text. The action {"length":"text"}
computes the length of the text property. In order to know from
which instance the action should take the text property from, the
target is used. Once the action is performed, the "length" action

Context Target Context variables

Shared variables

Event

Figure 3: The structure of an event in Varv.

adds the variable length with the result to the context variables of
the respective context.

An event can contain multiple contexts, because actions might
need to work on multiple instances at once and do something for
each of them. This is inspired by JavaScript array methods such
as map [53]. The contexts of an event can be modifed by actions,
e.g., the "select" action replaces the current contexts in an event
with one context for each concept instance the selection defnes.
Other actions also enable to remove contexts from an event, e.g., the
"where" action flters contexts based on the properties of targets
or variables in the context. Figure 4 shows an example where frst
the "select" action is used to select all todo concept instances,
then the "length" action is used to retrieve the length of the text
property of a todo, and lastly the "where" action is used to flter
the one with a length of less than four characters.

2.3.2 Event Creation and Passing. Events are created by triggers.
When creating an event, a trigger can add contexts to a new event,
for example, the "click" trigger adds the concept instance of the
element the user clicked on — if it is a concept instance — as a target
and the coordinates of the mouse click as variables.

Events are by default passed from one action to the next, each
working on the same event. This, however, can lead to changes
to the variables or contexts of an event. If an action should be
performed without afecting the event, the "run" action can be
used. This efectively makes it possible to split the event up. If an
action removes all context from an event, by default, an empty
event without contexts is passed on to ensure the execution of
consecutive actions. In this case, however, the event would lose
all its context variables. To prevent this, Varv stores variables that
are the same across all contexts in the shared variables. These are
persisted even if no contexts are in the event anymore and added
back to context variables once new contexts appear. If an event
should not be passed on if there are no contexts left, actions like
"select" or "where" have an option to stop the event, allowing
them to act as a gate.

3 THE VARV ARCHITECTURE
The overall architecture of Varv consists of six main components:
the event engine that reads in concept defnitions, templates that
defne how these concepts are rendered in the view layer, and map-
pings that defne where data from concept instances should be
stored in the data layer (see Figure 5). This section summarizes the
purpose of each of these components; their implementation in our
Varv prototype is described in section 4.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Borowski, et al.

Code

Data

Context

when: click
then:

select: todo length: text where: length < 4

text: shop

text: cook

text: eat

todoList

todo1

target: todoList
variables:

mouseX: 34
mouseY: 295

text: shop

text: cook

text: eat

todoList

target: todo1
variables:

mouseX: 34
mouseY: 295

target: todo2
variables:

mouseX: 34
mouseY: 295

target: todo3
variables:

mouseX: 34
mouseY: 295

text: shop

text: cook

text: eat

todoList

target: todo1
variables:

mouseX: 34
mouseY: 295
length: 4

target: todo2
variables:

mouseX: 34
mouseY: 295
length: 4

target: todo3
variables:

mouseX: 34
mouseY: 295
length: 3

text: shop

text: cook

text: eat

todoList

target: todo3
variables:

mouseX: 34
mouseY: 295
length: 3

{
“shortTodos”:{

"when":"click",
"then":[

{
"select":"todo"

},
{

"length":"text"
},
{

"where":"length < 4”
}

]
}

}

Action

todo2

todo3

todo1

todo2

todo3

todo1

todo2

todo3

todo1

todo2

todo3

Figure 4: Example of an event fow in Varv. The user clicks on the todo list in the app, triggering the action. The syntax of the
"where" action was shortened here to simplify the example.

3.1 Concept Defnitions and the Event Engine
Concept defnitions are fles that use the concept language which
was introduced in subsection 2.2 to defne the interactive behavior
of an application. There can be any number of concept defnition
fles in a Varv application. All concept defnitions are merged by the
event engine at runtime. When being merged, concept defnitions
later in the document overwrite earlier ones — i.e., existing concept,
actions, and properties can be added, suppressed, or overwritten
by adding new concept defnitions at the end of a document.

To illustrate this merging process, we used the convention of
splitting concepts into two parts in our examples: an abstract part,
that contains actions that are view-agnostic, and a concrete part
that contains actions that are view-dependent. By separating these
parts, it is possible to reuse the core logic of a concept if another
view is targeted.

3.2 Templates and the View Layer
The view layer contains views and templates. A view is a component
that renders a user interface with which users can interact, for
example the DOM. Making the view independent from the event
engine, allows it to connect diferent types of views to the same
underlying interactive behavior and state of an application.

Templates are used to specify how state should be represented
in the view by referring to concepts and properties in them (see
Appendix A.3 for an example). A template is view-dependent, thus,
diferent views require diferent templates. In the DOM, for example,
a template could be written in HTML while in other views they
might be required to provide a scene graph or other structures. The
view then combines these templates with the state it retrieves from

the event engine to generate a user interface. By generating the
user interface in this way, elements in the view can be connected
to their underlying concepts and state, allowing for higher-level
tooling such as a view inspector (see subsection 6.2). Lastly, views
can also add view-dependent view triggers, which can be used in
actions in the concept defnitions to react to user input in the view.

MappingMapping
Concept
Definition

MappingMappingMapping

Event engine

Data layer

View layer

MappingMappingView

MappingMappingData store

MappingMappingTemplate

Events

Updates

Figure 5: Architecture overview of Varv.

Varv: Reprogrammable Interactive Sofware as a Declarative Data Structure CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

3.3 Mappings and the Data Layer
The data layer contains data stores. Data stores allow Varv to store
state of concept instances and their properties in them. A data
store can be anything that can store data in a key-value format.
One purpose of using a separate data layer in Varv is to be able to
dynamically store data in heterogeneous ways, which allows users
to defne properties in the schema of concept defnitions without
having to take care of how and where it is stored. Another reason for
using a data layer is to decouple the state of an application from the
interactive behavior. This, for instance, enables to hot swap concept
defnitions in the event engine or to connect diferent application
to the same data store. The latter allows users to create their own
personalized applications, but still being able to collaborate on
shared data (subsection 5.1 demonstrates this).

Mappings are pointers that defne in which data store state is
stored. Mappings can be defned for each property of a concept.
This allows, for example, to store ephemeral state like the content
of an input feld in a data store that is not shared with other users.
If properties are mapped to multiple data stores, Varv synchronizes
state between all selected data stores. Data stores can, further, notify
the event engine about updates to the data, for example, if a remote
user changes data in a shared data store. The event engine then
synchronizes the data with other data stores and notifes actions
and the view about the change.

4 IMPLEMENTATION
Our main implementation of Varv2 is written in JavaScript, builds
on top of the Webstrates [41] platform and the Codestrates v2 [13]
framework, and runs purely client-side in a Web browser and uses
Codestrates v2’s extensible in-app IDE Cauldron for development
(see Figure 6a). This section will frst describe the Webstrates plat-
form and Codestrates framework and what parts are used for Varv.
Then we explain how the control fow of Varv works and how we
achieve live extensibility.

We have also implemented a proof-of-concept version of Varv
that is independent of Webstrates. We use this version of Varv
to package Varv applications as Electron [60] apps using regular
JSON and HTML fles stored on the disk for concept defnitions and
templates (see Figure 6b).

We, additionally ported this version of Varv to Observable [57]
using tagged templates [54] for concept defnitions and templates.
This makes it possible to use the computational notebook view of
Observable to create, share, and incrementally develop Varv appli-
cations (see Figure 6c). Further, this demonstrates the portability of
the Varv runtime to contexts outside of Webstrates.

4.1 Building on Webstrates, Codestrates v2,
and Cauldron

4.1.1 Webstrates. Webstrates [41] is a software platform for build-
ing reprogrammable, collaborative software on the Web purely
from the client side. The simple yet powerful mechanism behind
Webstrates is to synchronize and persist changes to the DOM of a
web page served from the Webstrates server. This includes changes
to embedded code (JavaScript, CSS, and more), efectively making

2Varv on GitHub: https://github.com/Webstrates/Varv (Retrieved November 25, 2021)

it possible to both collaborate on using and programming software.
As default the whole DOM is synchronized, but to support a relaxed
WYSIWIS (What You See Is What I See), a custom <transient> ele-
ment can be used to create subtrees that are not synchronized — e.g.,
for UI elements.

4.1.2 Codestrates v2 and Cauldron. Codestrates v2 [13] provides a
model for controlling the execution and interdependence of scripts
of various types.3 Furthermore, it provides an API for instantiating
code editors for specifc scripts (stored in so-called code fragments)
in the user interface. Codestrates v2 is bundled with its own ex-
tensible development environment Cauldron, which allows within-
application modifcation: users are able to create, edit, and run code
fragments directly inside the web browser without additional soft-
ware (see Figure 6a). Codestrates v2’s execution engine can be used
independently of Webstrates (e.g., as in our Electron prototype).

4.1.3 Varv. Varv adds a new Codestrates v2 fragment type for
concept defnitions. Templates are stored in HTML fragments and
styling in CSS fragments. Varv leverages the synchronization with
the Webstrates server to synchronize state that is stored in the
"dom" data storage — enabling collaboration. Varv inherits the abil-
ity to edit code directly in the interface, collaborate in real-time, and
version both data and code from Webstrates. Concept defnitions,
templates, and the concept data store are all persisted in the DOM
in custom tags hidden from the browser view using CSS. The user
interface generated from Varv is wrapped in a transient element,
hence synchronization of application state only happens through
the data storage.

4.2 Event Engine
4.2.1 Building and Rebuilding the Model. The event engine queries
all concept defnition fragments and parses their JSON code. Con-
cept defnitions are merged sequentially into a single defnition.
Extensions to the concepts such as injections are performed af-
ter the merge in the order they appear in the concept defnitions.
When a new concept defnition is added or any of the existing ones
are changed or deleted, the running model is destroyed and a new
model is built. Application state is not lost as it is stored separately
in data stores.

The merged model contains all concepts, schema, actions, map-
pings of properties, and data stores defned in the concept fles.
Once merged, the engine uses the mapping and data store informa-
tion to connect properties of concepts to their mapped data stores
and notifes the data stores of their connection. Afterwards, the
view is notifed of the updated model. Lastly, the engine subscribes
each action that has a when-block to their respective triggers.

Primitive triggers register themselves in the event engine once
instantiated. Once the trigger fres an event, which consists of a
string containing the trigger name and a JavaScript object con-
taining the context, the event is passed to the event engine that
distributes the event to the actions subscribing to that trigger. Like
triggers, primitive actions register themselves in the event engine

3While this model enables executing JavaScript code at runtime, Codestrates v2 does
neither handle duplicate event listeners, other issues that come up when re-executing
imperative code at runtime, nor synchronize runtimes across clients. Hence, limiting
its use for live and collaborative programming.

https://github.com/Webstrates/Varv

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Borowski, et al.

(a) The main implementation of Varv. It
builds on top of Webstrates. The Cauldron ed-
itor can be opened in the web browser.

(b) A proof-of-concept implementation of Varv in
Electron.

(c) A proof-of-concept implementation
of Varv in Observable.

Figure 6: Screenshots of our implementations of Varv.

once instantiated. Once an action is triggered, its actions are exe-
cuted: Each action receives the list of contexts in the event and the
action options defned in the concept defnition (see subsection 2.3
for more detail on the event fow).

Actions with the same name can be defned in multiple concepts,
thus, we provide a look-up function to fnd the correct action. To tar-
get a specifc action implemented in a concept, a dot-notation can be
used, for example, "checkers.markValidSquares" or "othello
.markValidSquares". There is a lookup order starting frst with
primitive actions to searching for actions with a given name in any
concepts in the model.

4.3 Data Stores
Types of data stores are registered in the event engine like triggers
or actions. They can be used to create custom named data stores
in concept fles. Our implementation of Varv defnes three types
of data stores: "dom", "localStorage", and "memory". By default,
properties are mapped to the "dom" data store, where they are per-
sisted and synchronized with other clients through Webstrates. An

Webstrates

Codestrates v2

Cauldron IDE Varv

Tooling

Varv on Webstrates

Electron

OS file system

Codestrates v2

Varv

Visual Studio
Code

Varv extensions

Varv on Electron

Figure 7: The software stack of two of our Varv prototypes.
Our main Webstrates-based implementation uses Cauldron
as its editing environment with Varv-specifc tooling built
on top. The Electron-based prototype uses Codestrates for
code execution but is independent from Webstrates. Elec-
tron is used to store and load code from the fle system. Code
can, e.g., be edited using Visual Studio Code, which could be
extended (not implemented in our prototype) with Varv sup-
port by using JSON Schema or by porting our block-based
editor.

option for the "dom" data store can change the location for storing
the state in the DOM to another webstrate, allowing multiple appli-
cations to work with the same data. Properties can also be stored
in "localStorage" or "memory" data stores, if they are ephemeral
or should not be shared with other clients. Our Electron-based
prototype uses the "localStorage" data store for persistence.

Once the event engine has loaded the model, it connects itself to
the data stores defned in the model. Next, it maps each property
to the data stores that it is mapped to and registers “getter” and
“setter” callbacks of the data stores in the property. After registering
the callbacks for each data store, the event engine attempts to
load already existing data of a property from each data store and
publishes it to all other data stores of that property and, hence,
synchronizes them. If a property is mapped to multiple data stores
that contain conficting data, the ones frst in the list of mappings
overwrite the data of later ones.

If data changes outside the Varv system, e.g., remote changes
to the "dom" data store, a data store can notify the event engine
about changes to properties, which will then synchronize it with
other data stores and notify views and the "stateChanged" trigger.
Changes to properties from actions or views are sent to the event
engine and forwarded to the registered data stores.

4.4 Views
Views exist mostly independent from the rest of the Varv system.
They can connect to the event engine and register to concepts and
properties to get and set properties, as well as register their own
triggers. Our implementation includes the "dom" view that renders
data in the DOM of a website.

It parses all <dom-view-template> nodes and collects what con-
cept instances are required by the templates. Next, it subscribes to
these concept instances in the event engine and retrieves a list of
concept instance objects with references to their properties. The
view is notifed on updated properties, created or removed concept
instances, and is able to set changes of properties — again, pass-
ing new values to the event engine, which forwards it to the data
stores. If any template changes, the view unsubscribes all properties
and repeats the process. In the templates, the "dom" view looks
for special attributes (concept, property, and value) and replaces
curly braces of properties in other attributes or text nodes with the

Varv: Reprogrammable Interactive Sofware as a Declarative Data Structure CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

values of properties (see Appendix A.3). Additional style can be
added using CSS and assets like images or icons can be uploaded to
a webstrate using Cauldron. The "dom" view supports mouse and
keyboard events as view triggers.

5 CASE STUDIES
To illustrate how Varv applications enable new ways of extending
and modifying software, we present two case studies of how Varv
can be used: The frst case study illustrates how an existing todo
list application can be collaboratively modifed through addition
of code. The second case study demonstrates how Varv can be
used to create a declarative abstraction layer for board games and
how diferent applications can be built using these abstractions.
The case studies are also presented in the paper’s accompanying
video. In addition to the two case studies, we briefy describe other
application examples we explored.

5.1 Case Study 1: Todo List
Imagine two computer science students, Melissa and Daniel, who
work together on a course project. To manage their tasks, they use
a simple collaborative todo list web-app created in Varv. During the
frst half of their project they work tightly together. However, they
increasingly need to split up tasks and work on them in parallel.
They now want a feature in the todo list that lets them assign todo
items between them.

Adding the “assignee” feld. To modify the todo list they click
an “Edit” button in the top right corner of the interface to open
Cauldron. There is a list of fles that includes the concept defnitions
for the app: "todo", "todoList", and "todoInput". They need
to modify the "todo" concept. Daniel creates a new folder with
the name “assignee” with a new concept fle. He adds the new
property {"assignee":"string"}, which stores the name of the
person responsible for the todo item (see Figure 8a). Next, he needs
to show that information in the view, so he also creates a new
template fle. He copies over the template from the original todo
item and adds a line with an input feld for the property. While
doing so, he can immediately see the input feld appear in his view
and test if it works by writing his name into the input feld.

Adding fltering. Melissa’s friend Samantha has written a flter-
ing mechanism for the todo list. Melissa can add the fltering to their
app by dragging the folder containing a concept, template and style
fle, from Samantha’s in-app IDE Cauldron to hers. Daniel wants
fltering on his own "assignee" feld as well. However, he does
not really understand the fltering code so he asks Melissa for help.
Together, they try to understand the code and Melissa adds some
code to the fltering to also support the assignee fltering. While
Melissa is coding, Daniel has the app open, and he can immediately
try out the efects of code on the app.

Using separate views. During the second half of their course,
Daniel adds more and more features to the todo list. Melissa fnds
the interface cluttered and wants a simpler app. So, she creates a
copy of their todo list. In the copy, she deactivates all the features
she does not want in her version of the todo list and — because
she is making changes anyway — also adds a dark theme for the

web-app. To still be able to work on the same data as Daniel, she
remaps the data store of the new app to Daniel’s (see Figure 8b).

How it works. Varv supports incremental application develop-
ment, thus, Daniel and Melissa can add functionality step-by-step.
Adding new concepts or templates allows them to overwrite the
parts of an app that they want, without having to change the origi-
nal implementation. This is enabled by the event engine merging
all concept defnitions and rebuilding the model after every change.
This, further, enables them to add new functionality from their peer
Samantha without having to touch the code of the original todo
list or their assignee feature. As they are adding new functionality
accretively in new concept defnitions, it is also possible to go back
to prior versions by disabling these defnitions in Cauldron.

With Varv running on Webstrates, they can collaborate on the
code of the app in Cauldron and test new functionality together.
Varv makes the collaborative testing possible by automatically
reloading concept defnitions whenever changes are done locally or
remotely. As the todo app is stored in a webstrate where the app is
self-contained, i.e. both the data and the application code are stored
together, they can generate copies to create personalized applica-
tions. Decoupling the interactive behavior (concept defnitions) and
the view from the data, further, makes it possible to remap the
"dom" data store to another webstrate, providing means to create
customized views while using the same data.

5.2 Case Study 2: Board Game Toolkit
Sean is a fan of board games like Checkers4 or Othello5. He has
ideas for modifying existing games to make them more attractive
and wants to realize some of them as web apps to play with friends.

Building a toolkit. Sean wants to make a toolkit for games in Varv
so he does not have to build new games from scratch. He starts by
creating a "game" concept for more general game mechanics like
taking turns and who the winner of a game is. Next, he creates the
basic concepts of board games: the "piece" and the "square". Both
share common traits: they have one of two colors and a location
defned by a row and a column. Sean creates a shared mixin with
helper actions for each of those and calls them "colorable" and
"locatable". He injects both mixins into both concepts. In order
to let players select and move pieces, he adds another mixin that
he calls "markable", which enables him to mark pieces or squares.
The mixin contains actions to, for instance, "mark" a piece or check
whether a piece "isMarked".

Creating Checkers and Othello with the toolkit. Next, Sean adds a
new concept for the checkers game, where he adds actions that are
specifc to Checkers, for example, to handle when a piece jumps over
another piece. In doing so, he uses the actions from the concepts
he created in the toolkit. Sean shows the game to his friend Amy.
She wants to implement a game by her own. Amy makes a copy
of Sean’s game and disables the Checkers concept fle. She then
creates a new concept fle for her favorite board game Othello. After
implementing the Othello game, she immediately tries out the game
in a online multiplayer match against Sean.
4Checkers or Draughts: https://en.wikipedia.org/wiki/Draughts (Retrieved Novem-
ber 25, 2021)
5Othello/Reversi: https://en.wikipedia.org/wiki/Reversi (Retrieved November 25, 2021)

https://en.wikipedia.org/wiki/Draughts
https://en.wikipedia.org/wiki/Reversi

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Borowski, et al.

(a) Daniel adds a new concept defnition to the todo list app and adds
the "assignee" property. Once the concept defnition is activated, the
property is immediately added to todos, seen in the inspector in the
center bottom of the screen.

(b) Daniel and Melissa can both use their preferred view and function-
ality in their app. While Daniel (left) uses more features and a light
theme, Melissa (right) uses a more simple layout with a dark theme.
The underlying data is shared.

Figure 8: Screenshots of the frst case study.

Modifying the games. Sean plays around with variants of his
Checkers game. He makes concept defnitions that he can toggle
on and of with small adjustments, which, e.g., enables pieces to
move both forward and backwards all the time — making the game
more complex to play. In yet another variant, he lets players have
two consecutive turns after each other. For a fnal variant, Sean
wants to combine the game rules of Amy’s Othello game with
Checkers. He asks Amy to join him remotely in creating their own
“Frankenstein-game” Checkers-O-Thello. They add a new concept
defnition, where they resolve issues between the game rules of
both games. After some fxes, they activate the game rules of both
Othello and Checkers and can now use Othello’s game rules for
placing pieces and Checkers’ game rules for moving pieces.

How it works. Varv lets users create their own abstractions over
complex state transformations in the form of custom concepts and
actions. Sean leverages this by creating concepts for pieces and
squares and by adding meaningful actions to them. By doing this,
he efectively writes his own domain-specifc language for creating
board games. Using this language in the Checkers game, he can
think about high-level rules of the game, such as “Which are the
valid squares a piece can move to if it was selected?” rather than
low-level problems like “How do I detect if the when the user picks
a piece?” Once created, these abstractions can be reused, so that,
for example, Amy can also create her Othello game without having
to solve low-level problems frst.

This process of modifying games and creating variants of them
is supported by Varv’s support for incremental application develop-
ment. It enables Sean to modify only some actions of the Checkers
game in his variants, without having to recreate the whole game
several times. When implementing the Checkers-O-Thello game,
Varv’s real-time collaboration makes it possible for Sean and Amy
to work together on the code, and state synchronization through
the Webstrates-based data storage to play the game as a multiplayer
game. As both of their games were created using the same abstrac-
tions, merging them is a straightforward task. They need to add a
few actions to their game implementations to get the game rules of
both games work together in a single game. By accretively adding

these actions, they do not even have to touch the concept defni-
tions of the two already existing games — something that would be
difcult to do in conventional imperative programming languages.

5.3 Other Examples
Besides the two case studies, we also explored creating other types
of applications with Varv:

UI Designer. The UI Designer can be used to create mock-ups of
user interfaces and the navigation of apps — similar to Figma [22].
It lets users create multiple screens and add elements such as labels,
boxes, or buttons within those screens (see Figure 9a). Elements
can be moved and resized with the mouse cursor and can link to
other screens. In the preview mode, interactions can be tested and
used to navigate to other screens by clicking on them.

Computational Notebooks. The Computational Notebook is writ-
ten in Varv and lets users write their own Varv applications using
a computational notebook interface. Each cell in the notebook can
be a concept defnition or a template making it possible to quickly
sketch Varv applications (see Figure 9b). New cells can be added us-
ing buttons in the toolbar. The Computational Notebook also adds
a custom action AddFragment (similar to Appendix A.4), written
in JavaScript, which can add new fragments to the DOM.

6 TOOLING
To demonstrate how the architecture of Varv and its declarative
language design lends itself to create tooling on top of it, we im-
plemented multiple authoring and debugging tools for Varv. The
JSON-based data structures, in which Varv applications are defned,
are simple and structured, so other authoring environments can
be used to author Varv applications. The decoupled architecture of
view, data, and event engine, in addition, facilitate to create inspec-
tors for data and the elements in the view — enabling not only to
inspect the view of applications but also their interactive behavior.

Varv: Reprogrammable Interactive Sofware as a Declarative Data Structure CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

(a) The UI Designer. (b) The Computational Notebook.

Figure 9: Screenshots of other example applications we ex-
plored with Varv.

6.1 Authoring Tools
By specifying applications in Varv in JSON-based data structures, a
common fle format in the modern Web, Varv provides a common
interface for other authoring tools to connect with. We created three
examples of authoring experiences that allow to defne interactive
behavior in Varv.

YAML-Based Editor. Readability and ease of writing actions could
be improved by using YAML instead of JSON as the language for
concept defnitions. As a superset of JSON, it is possible to add
support for specifying concept defnitions in YAML instead of JSON.
Using indented delimiting, YAML potentially makes writing code
easier as less special characters are used (see Figure 10a).

JSON Schema Auto-Completion. We created a JSON Schema [62]
specifcation for the concept language and most of its primitive ac-
tions and triggers, and data stores. JSON Schema is widely used and
supported by many code editors and IDEs as well as Cauldron. Reg-
istering the JSON Schema in these editors enables autocompletion,
type checking, and validation (see Figure 10b). Autocompletion sup-
ports users in exploration, while type checking and validation can
help to resolve wrong specifcations/parameters while writing the
code. A current limitation of the JSON Schema is that it is limited
to the primitive actions and triggers, actions that are defned in
concepts are currently not added.

Structured Block-Based Editor. To create a more tangible and ex-
plorable authoring experience, we implemented a structured and
block-based editor (see Figure 10c). The editor is implemented us-
ing the Blockly [26] library and provides blocks for most primitive
actions and triggers. The sidebar of the editor makes it easy to ex-
plore available actions and triggers. Editing concept defnitions in
the editor automatically updates the JSON, creating a live program-
ming experience. By applying changes immediately to the JSON
and hence the event engine, the editor allows for quicker ways
to enable and disable actions and experimenting with diferent in-
teractive behavior. The block-based editor, however, has the same
limitation as the JSON Schema, as it currently not dynamically adds
actions from concepts as blocks.

6.2 Debugging Tools
The declarative structure of applications and the decoupling of the
engine from the data and the view layer means that the view is
generated from the data and the model in the event engine. In doing
so, the view can be connected to both the interactive behavior and
the underlying data. We show in two inspection tools how this
connection can be leveraged to support debugging and testing. By
bringing applications and the development environment with their
underlying code closer together, we aim to make it easier for users
to fnd the relevant code for their planned modifcations, lowering
the threshold to modify their applications.

Data Inspector. The data inspector lives inside the Cauldron ed-
itor (see Figure 11a). In its tree browser, concepts types and their
instances can be modifed, created, or deleted. Selecting a concept
shows its schema and actions, and selecting a concept instance
shows its properties and their values in the inspector tab under-
neath the tree browser. Values can be edited and modifcations
are directly applied in the view. Creating the data inspector was
possible as the information about schema and actions of concepts
is available in the model of the event engine in a structured format.

View Inspector. The view inspector can be used in the "dom" view.
By holding the control key and right-clicking on any element in
the view, the view inspector shows a menu with information about
the clicked element (see Figure 11b). The view inspector checks if
the selected element or any of its parent elements is an instance
of a concept and which template fles were used to generate the
view. Using the information about the concept instance, the view
inspector creates a link to the instance in the data inspector that
users can follow to inspect the properties of the selected element.

The view inspector is enabled by the decoupling of concept def-
nitions, data, and the view. As the view is generated at runtime and
updated whenever a concept defnition or template is modifed, it
always retains a connection to the concepts and data that were used
to generate it. We created the view inspector as a step into breaking
up the strict border between the application and the development
environment, supporting users in fnding relevant code for their
modifcations.

7 RELATED WORK

7.1 Declarative Programming
Declarative languages separate the how from the what and allow
users to focus on the specifcs of their domains [28]. Some would
argue that Varv is not declarative because actions written in Varv
consist of series of steps and can assign variables. However, com-
puter science literature does not provide a concrete notion of what
declarative programming is. Lampson describes a declarative pro-
gram as a program which has few steps, is a good match for the users
view of the problem domain, provides mechanisms for composition,
gives big primitives so that users can get a lot done without having
to write code, and allows for clean escape hatches so that imperative
programming is allowed when needed [43, 63]. Varv meets all of
these conditions. Varv provides high level primitives for binding
data and updating state, enables rich mechanisms for composition,
and allows users to specify custom actions using JavaScript. Addi-
tionally Varv provides capabilities for users to develop their own

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Borowski, et al.

(c) A block-based editor that enables explo-
ration of actions and triggers in the sidebar.

(a) A YAML editor for concept defnitions. (b) JSON Schema for concept defnitions adds
autocompletion and code validation.

Figure 10: A summary of three implemented authoring tools in addition to editing JSON directly.

domain specifc primitives, enabling greater expressivity in the
large domain of interactive web applications.

Declarative languages have become widely adopted in many
domains because they make it easier to accomplish complex tasks.

(a) The data inspector in the Cauldron editor. It can inspect concepts
and their instances. The properties of instances can be edited in-
side the editor. Selecting a concept type or instance highlights the
related element in the view.

(b) The view inspector in the "dom" view. It can inspect elements and
identify their concept type. Using the menu, it is possible to jump to
concept instances in the data inspector or to the template fles used
to generate the view.

Figure 11: Two debugging tools for inspection we imple-
mented for Varv.

Database query languages such as SQL have allowed database de-
velopers to focus on describing what data they want while the
query optimizer determine how best to get the data using available
indexes and joins [40]. HTML and CSS let web developers describe
what markup and styling to use while the browser optimizes the
page rendering [28, 40]. Vega-Lite lets users describe high level in-
complete visualization specifcations and uses heuristics and rules
to resolve ambiguities and generate a visual representation which
follows visualization best practices [72]. Beyond performance im-
provements, declarative languages are highly suitable for integra-
tion with higher level tools [66]. Within the Vega and Vega-Lite
ecosystem Voyager [72], Lyra [64], and Altair [70] have been de-
veloped to let users generate visualizations through exploration,
direct manipulation, and Python bindings respectively.

Because of the benefts of declarative languages there have been
many attempts to write declarative languages for the web. Many of
these attempts such as Araneus [55], AutoWeb [25], STRUDEL [21],
and WebML [15] provide declarative languages, both graphical
and textual, which can be used to derive multi-page websites from
various data sources. These projects use multiple approaches for
specifying the structure, navigation, and presentation of websites,
but are focused on sites where each page is a statically generated
view of data rather than an interactive application. SOBL [19] is
closer to Varv and provides a declarative specifcation for user
interactions which is automatically parsed into static HTML web
pages and state transition diagrams, but does not close the loop
and generate interactive applications, or provide mechanisms for
composition of existing programs.

Vega and Vega-Lite [65–67] provide mechanisms to allow users
to convert a defnition of a data visualization, written in JSON,
into an interactive chart. Varv is an extension of the same idea
to applications. Because of the similarity, Varv uses many similar
mechanisms to Vega and Vega-Lite. For example both Vega and Varv
allow users to defne reusable pieces of functionality by associating
the functionality with a name and both Vega and Varv allow users to
extend the runtime with user defned functions, while still allowing
users to invoke the functions declaratively.

KScript and KSWorld [58] are respectively a scripting language
and an editor for end-user authoring of software, that emphasize
reduction of accidental complexity and live programming to support

Varv: Reprogrammable Interactive Sofware as a Declarative Data Structure CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

exploratory application building. Hence, the project shares similar
goals with Varv. Also, similarly to Varv, KScript provides declarative
language constructs for event-fow based programming. However,
they are embedded in an object-oriented imperative programming
language inspired by JavaScript, whereas Varv is a fully declarative
programming model.

7.2 Alternative Representations of Web
Applications

There is a long line of research which attempts to make writing
simple web applications easier. Object Spreadsheets [50] identifes
that many end-user programmers are familiar with the spread-
sheet model, and uses a new computational model for spreadsheets
to enable the development of web applications. However, Object
Spreadsheets is focused on providing powerful spreadsheet based
mechanisms for data modeling, and provides few abstractions for
enabling interactivity, and falls back on imperative scripting for
mutating state. Quilt [11] provides a similar spreadsheet backed
metaphor for web applications, but provides almost no data ab-
stractions, and acts essentially as an HTML attribute based tem-
plate language for binding elements on a web page to rows in a
spreadsheets. Gneiss [16] provides a live programming environ-
ment for developing websites from web data using spreadsheets
but does not provide mechanisms for code reuse or composition.
Wildcard [46, 47] also uses a spreadsheet metaphor, but enables
the augmentation of existing websites with additional data rather
than the construction of independent applications. Varv provides a
declarative specifcation for application logic and user interactions,
as well as data bindings to a data store. Because Varv represents a
declarative target, we believe high-level tooling such as live editing
environments or integration with external data sources could be
built on top of Varv.

Mavo [71] allows users to develop CRUD applications with a
template language built directly into HTML. The user defnes a data
schema implicitly by adding attributes and expressions to HTML
elements, and Mavo provides out of the box support for editing
data directly in the interface. The primary goal in Mavo is to allow
users to directly manipulate and defne the shape of a data schema
in a UI layout. Varv also supports a template language but separate
the defnition of the data model from the template. Varv has less
emphasis on direct manipulation of data and instead focuses on
composition and malleability of concepts. In addition, by separating
data from the view, Varv allows users to write application logic
once while targeting multiple view layers. Additionally, because
the data logic in Mavo is encoded directly in the layout, creating
new layouts while retaining existing data logic can be non trivial.

7.3 Software Development Paradigms
7.3.1 Object Oriented Programming (OOP). Varv’s notion of con-
cepts has direct parallels to classes in OOP. Concepts consist of
two parts, a schema, and actions. The schema is similar to class
properties, and the actions are similar to class methods. Varv’s ex-
tension methods — "inject" and "join" — are synonymous with
mixins and traits. Because of these parallels, any of the interactive
applications built-in Varv could be expressed with OOP. However,
there are a few key diferences. Object-oriented code is imperative,

which leaves less room for the underlying runtime to implement
optimizations, and provides a more difcult target for higher-level
tooling. Most object-oriented languages do not provide mecha-
nisms for modifcation or extension of classes without changing the
source code. In contrast, Varv concepts are declarative, inherently
structured, and support modifcation via addition. Varv concepts
consist of primitives, which enable the high-level yet expressive
specifcation of application and interaction logic. Varv concepts do
not provide mechanisms for encapsulation, such as private vari-
ables. The lack of encapsulation forces Varv applications to replicate
the store design paradigm from Flux applications and aids rapid
prototyping. Additionally, Varv concepts support modifcation and
extension via addition, enabling new workfows for the develop-
ment of interactive applications.

7.3.2 Feature-Oriented Sofware Development. Incremental [14]
or Feature-Oriented Software Development (FOSD) is an area of
research that provides mechanisms to incrementally develop soft-
ware one feature at a time [3]. There are two general approaches
to FOSD: compositional and annotative. Compositional approaches
enable the development of features in distinct modules that can later
be composed to create fully working applications. Most research
implements compositional techniques as extensions to existing
languages [2, 5, 8] but tools for adding compositional feature de-
velopment to arbitrary languages exist as well [4, 8]. Annotative
approaches enable feature-oriented development using explicit an-
notations of source code, such as #ifdef [35]. In general annotative
approaches provide greater fexibility because they allow the modi-
fcation of source code at the statement level, while compositional
approaches provide better organization because code associated
with each feature is modular and self contained [3].

Varv concepts implement a compositional approach to and retain
similar limitations to past compositional systems. Compositional
techniques generally do not provide mechanisms to introduce code
fragments where order matters [35]. Within the context of Varv,
this means there are certain cases where extending Varv programs
requires duplication of existing code. Additionally, programs writ-
ten using a compositional FOSD paradigm can be difcult to reason
about because the fnal program results from multiple distinct ar-
tifacts [35]. Higher-level tools which visualize the fnal combined
program can help [35, 36]. We believe similar tooling could be
developed for Varv as well.

7.3.3 Conceptual Design of Sofware. Software engineers have long
realized that they can build more complex and more efcient ap-
plications by sharing and reusing software components [52]. Déjà
Vu [61] identifes that many web applications are built using com-
binations of similar components and provides a catalog of self con-
tained and reusable components — called concepts — which can be
integrated using a declarative template language to build non trivial
applications. Déjà Vu identifes that concept oriented architectures
can allow for incremental development of applications by adding
one concept at a time and testing functionality. In Déjà Vu the user
is able to utilize concepts from a core catalog, and this catalog can
be used to implement a wide variety of applications. However, if
the user wants to implement their own concepts they need to write
a frontend component and a backend server implementation.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Borowski, et al.

Varv’s approach, including our choice to name its core build-
ing block a “concept,” is deeply inspired by Déjà Vu and Jackson’s
writing on concept design [32, 33]. Varv implements a similar ar-
chitecture in which concepts are bound to the UI using a template
language. However Varv provides a lower level catalog of abstrac-
tions, such as actions which can be used for modifying state, and
triggers which can be used for listening to state changes or user
interactions. Varv focuses on providing declarative mechanisms for
users to compose lower level abstractions into higher level semantic
or domain specifc abstractions. Varv also allows users to extend
existing concepts and defne new concepts without dropping into
JavaScript. By providing mechanisms for extension, Varv allows
incremental development one feature at a time.

8 DISCUSSION

8.1 Limitations
Varv is a research prototype and, as such, it does not yet provide
all the features necessary for building production-grade interactive
software. There are two classes of missing features: those which are
straightforward to implement but missing due to time constraints
and those which require careful thought and are potential research
questions for future work. In the frst category are issues such as
the lack of support for accessing remote or asynchronous data, the
expressive limitations of Varv’s templates compared to templates
found in popular frameworks such as React or Vue, and the rel-
atively small standard library of actions and events provided by
Varv. In the second category are issues such as the lack of access
controls, the choice of template languages for alternative substrates,
the inability to extend templates via addition, the challenges in au-
thoring incrementally developed applications, and the challenges
of supporting polymorphism in Varv. We expand on each of these
issues from the second category below.

Information Hiding and Access Controls. Concepts have no no-
tion of private properties, which means any concept can access the
properties of any other concept. This lack of information hiding
is a conscious design choice because it replicates the Store design
pattern — a common approach adopted by frontend libraries (e.g.,
Redux, Vue, and Svelte) where application state is managed cen-
trally to simplify developing cross-cutting interface elements. In
doing so, Varv facilitates rapid prototyping and extension but this
limitation makes it challenging to write interactive software that
contains private secrets, such as API keys and passwords, or that
relies on limiting read or write access to data to specifc users, such
as chat applications. Varv does ofer a limited workaround: users
can defne local data stores that are not synchronized. These lo-
cal stores allow users to store things like confgurations but are
not suitable for secrets since the data is still accessible by other
concepts. It remains to be seen if we can augment Varv with a
concise, descriptive, and legible syntax for annotating data with
identity information and access controls while preserving the rapid
prototyping afordances of our current approach.

Defnition Files and Templates for Alternative Substrates. Varv
is agnostic to the view layer, but the current template fles and
bindings rely on the existence of a declarative syntax (HTML) for

representing the DOM. One of the design goals for Varv is to decou-
ple application logic from interaction modality because we realized
early on that it would be valuable to enable the rapid retargeting
of interactions from one modality to another. We plan to integrate
Varv with substrates outside the DOM environment, such as a We-
bGL view to support 3D or AR rendering or an IoT substrate that
supports declarative interactive logic for intelligent devices such as
lights and switches. We believe this is possible but are unaware of
declarative template languages for expressing the view or, in the
abstract, bindings between concepts and these substrates.

Template Modifcation Via Addition. Varv’s templates support
composition via template references, but when users add new fea-
tures to Varv applications, previous templates and template refs
often have to be copied and modifed, complicating the development
process, duplicating code, and efectively breaking with the open
authorial principle [7]. The challenges of supporting template modi-
fcation via addition may be a limit posed by compositional methods
to extension. In compositional approaches to feature-oriented soft-
ware development, it is considered impossible to introduce state-
ments in the middle of existing methods [35]. If we consider the
template defnition synonymous with a function defnition, this
limitation is also applicable to templates. AspectJ provides a unique
approach by enabling the extension of method calls within specifc
methods [38]. However, this multi-level approach to extension can
be challenging to reason about and only covers certain cases, such
as overriding a nested template in a specifc parent template.

Authoring Challenges. While the presented debugging tools are
a frst step to support authoring in Varv, the nature of accruing
changes over time, possibly in many concept defnitions and tem-
plates, poses new questions regarding how tools can best support
authoring incrementally developed applications: If an application
is edited by multiple users over longer periods of time and each
modifcation is added through addition, users have to traverse each
fle, mentally tracking the incremental development of the appli-
cation’s concepts, actions, and triggers, in order to understand the
application state. Future tools might support users by making it
possible to inspect the current state of an application behavior, i.e.
presenting the user the merged concept defnition and templates.
While this would condense code into a single concept defnition
and template, such a process might lose information about how and
in which order modifcations were developed. Providing context
and provenance for changes would be important.

Supporting Polymorphism. When Varv injects a source concept
into a target concept using extension mechanisms, the target con-
cept inherits the actions and properties of the source concept, but
Varv does not form an is a relationship between the source and
target concept. The target concept cannot populate properties or
views which refer to the source concept, even though the target
concept exposes the same interface of properties and actions as the
source concept. This limitation is due to the event fow model. Al-
lowing multiple concept types to appear in the same set of contexts
could create a set of contexts with diverging states, for example, if
an action is defned diferently in the various concepts. Without
polymorphism, it is not easy to create sets of similar objects which
each have unique behavior.

Varv: Reprogrammable Interactive Sofware as a Declarative Data Structure CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Evaluating Usability. We have evaluated the feasibility and ex-
pressivity of Varv through demonstration [44]. However, we have
not evaluated the usability of the programming model with actual
users. A user study of user interface systems such as our work
with Varv is challenging [44, 59]. Currently, our tooling for devel-
opment is proof-of-concept, and an — ideally longitudinal — study
of software appropriation over time with Varv would require ex-
tensive tool support. Additionally, a user study would be required
to understand whether users who are profcient programmers but
unfamiliar with declarative programming, can make use of Varv.

We chose an event driven architecture because event architec-
tures are well suited for incremental development [49]. Users can
write new actions which run before or after any existing action or
UI event in a Varv application, without changing the existing action
or UI event. However, over-use of events can inhibit comprehen-
sibility and debuggability of larger programs [49]. Our authoring
and debugging tools (see subsection 6.1 and 6.2) let users edit tem-
plates and view data associated with concepts, but future work
could explore richer visualizations or tracing and debugging of the
event graph, potentially easing the developer experience in larger
applications. Additionally, a new runtime could explore alternative
programming styles such as event-driven functional reactive pro-
gramming [66], or functional programming, which avoids issues of
declaratively managing state.

8.2 Future Work
With Varv we have demonstrated that a declarative approach to
specifying interactive applications as data structure is not only pos-
sible, but also provides a range of powerful capabilities. Through
two very diferent applications built on top of Varv we have demon-
strated that the ceiling for what can be achieved with Varv is high,
but we do not clearly know its bounds in terms of expressivity
and performance. Thus, an immediate opportunity for future work
would be to more systematically evaluate these two aspects.

To better assess Varv’s performance, future work could begin
by conducting comparative benchmark studies. Following the ap-
proaches used to evaluate the performance of frontend JavaScript
libraries, these studies could measure both the performance (i.e.,
time taken) as well as memory consumption of running a suite of
operations like rendering, manipulating, and updating thousands of
interface elements. Besides empirical methods, future work on per-
formance optimization can also look to practices already adopted
by these frontend libraries as well as techniques detailed in the aca-
demic literature on datafow management. For instance, as updating
the DOM can be a computationally-intensive operation, React se-
lectively updates DOM nodes by maintaining an in-memory virtual
DOM [20]. Similarly, the data stream management community has
developed methods for incrementally processing data by fagging
data tuples as either new or removed, and only passing these fagged
tuples (rather than the full data table) between datafow nodes [1, 6].

Future work on determining Varv’s expressive ceiling can unfold
in myriad ways. Our choice of implementing a todo list for our
frst case study was motivated by TodoMVC [69], which provides
a benchmark to compare how various Model-View frameworks
implement todo list applications. A next step would then be to
target alternate benchmarks such as the seven challenging GUI

programming tasks from 7GUIs [39]. To scale this approach, one
could turn to large datasets of interactive applications [18] and
interaction traces [17] to catalog common classes of interaction
techniques, and decompose them into recurring conceptual de-
sign patterns — an approach that Déjà Vu has already begun to
explore [61]. While promising, these directions adopt primarily
qualitatively methods to determine expressivity. An alternate ap-
proach might follow McGufn and Fuhrman [51] to more formally
evaluate Varv’s expressivity.

An exciting avenue for future work, and a direction inspired
by the efect Vega [66] and Vega-Lite [65] have had in data visu-
alization, would explore higher-level systems for authoring Varv
applications. In particular, by representing interactive software as
a data structure, Varv makes it possible to programmatically rea-
son about the composition of applications. As a result, one can
imagine building not only freeform direct manipulation graphi-
cal authoring environments (akin to Lyra in the Vega/Vega-Lite
ecosystem [64, 73]) but also methods for recommending and auto-
completing interaction design (analogous to Data Voyager [72] or
Juxxt [68]). For instance, a higher-level system might analyze the
schema of concepts currently in use, and execute a lookup in the
catalog to identify other concepts that are often used together or
that have a complimentary schema. Besides the catalog described in
the previous paragraph, such workfows would require the develop-
ment of additional infrastructure to support a “concept ecosystem,”
i.e., mechanisms to package and share concept defnitions [27].

Such programmatic reasoning about the concepts that under-
lie interactive software also recalls ideas of instrumental interac-
tion described by Beaudouin-Lafon [9]. Namely, Beaudouin-Lafon
envisions a future where interaction techniques — reifed [10] as
“instruments” — rather than applications are the primary organiza-
tional unit of user interfaces. Thus, he imagines that interaction
instruments can be reappropriated and used in contexts they were
not initially designed for (e.g., using a snap-to-grid feature, typi-
cally found in vector graphics packages, but to organize the icons
on your desktop). To realize such a vision, however, will require
more sophisticated methods to compose and extend concepts than
Varv currently supports. Here, one may look to the operators de-
scribed by Jackson [33] such as action or structure (schema) syn-
chronization, or Project Cambria’s [45, 48] approach of bidirectional
lenses [23, 29, 30]. Reasoning about and applying the appropriate
composition operators automatically would be a critical step on the
journey to a cognitively convivial information space [24, 31].

9 CONCLUSION
Modern software development techniques for constructing inter-
active software typically involve writing imperative code which is
packaged and deployed as hermetically-sealed turnkey applications.
Writing extensible software is an explicit choice and requires careful
design choices. In contrast, Varv provides a declarative approach
to developing software, yielding an accretive development process
and applications that are inherently extensible. We have outlined the
design goals of Varv and have explained how the components of the
Varv language — concepts, schema, actions — help fulfll those design
goals. We have demonstrated through two case studies the devel-
opment process enabled by Varv, showing how Varv can be used

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Borowski, et al.

to construct a domain specifc toolkit for building board games,
and how Varv can be used to collaboratively and incrementally
develop a shared todo list feature by feature. We provide two ex-
amples of higher level tooling built on top of Varv, an inspector
for accessing relevant code directly from an application’s UI and
an alternative Blockly-based editor interface. We hope that Varv
inspires future research to enable non-programmers to develop
interactive software.

ACKNOWLEDGMENTS
We thank Geofrey Litt, Daniel Jackson, Philip Tchernavskij, and
the anonymous reviewers for their helpful feedback. We also thank
Jonas Oxenbøll Petersen for assistance in preparing the video fgure.
This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 740548) and from
Carlsbergfondet (grant agreement No CF17-0643).

REFERENCES
[1] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Con-

vey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. 2003.
Aurora: a new model and architecture for data stream management. The VLDB
Journal—The International Journal on Very Large Data Bases 12, 2 (2003), 120–139.
https://doi.org/10.1007/s00778-003-0095-z

[2] Felipe I. Anfurrutia, Oscar Díaz, and Salvador Trujillo. 2007. On Refning XML
Artifacts. In Web Engineering (Lecture Notes in Computer Science), Luciano Baresi,
Piero Fraternali, and Geert-Jan Houben (Eds.). Springer, Berlin, Heidelberg, 473–
478. https://doi.org/10.1007/978-3-540-73597-7_39

[3] Sven Apel and Christian Kästner. 2009. An Overview of Feature-Oriented
Software Development. The Journal of Object Technology 8, 5 (2009). https:
//doi.org/10.5381/jot.2009.8.5.c5

[4] Sven Apel, Christian Kastner, and Christian Lengauer. 2009. FEATUREHOUSE:
Language-Independent, Automated Software Composition. In 2009 IEEE 31st
International Conference on Software Engineering. 221–231. https://doi.org/10.
1109/ICSE.2009.5070523

[5] Sven Apel, Thomas Leich, Marko Rosenmüller, and Gunter Saake. 2005. Fea-
tureC++: Feature-Oriented and Aspect-Oriented Programming in C. Technical
Report.

[6] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar,
Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer Widom. 2004.
STREAM: The Stanford Data Stream Management System. Technical Report 2004-
20. Stanford InfoLab. http://ilpubs.stanford.edu:8090/641/

[7] Antranig Basman, Clayton Lewis, and Colin Clark. 2018. The Open Authorial
Principle: Supporting Networks of Authors in Creating Externalisable Designs.
In Proceedings of the 2018 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Refections on Programming and Software (Boston, MA, USA)
(Onward! 2018). Association for Computing Machinery, New York, NY, USA,
29–43. https://doi.org/10.1145/3276954.3276963

[8] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. 2004. Scaling Step-Wise
Refnement. IEEE Transactions on Software Engineering 30, 6 (2004), 355–371.
https://doi.org/10.1109/TSE.2004.23

[9] Michel Beaudouin-Lafon. 2000. Instrumental Interaction: An Interaction Model
for Designing Post-WIMP User Interfaces. In Proceedings of the 18th international
conference on Human factors in computing systems. https://doi.org/10.1145/332040.
332473

[10] Michel Beaudouin-Lafon and Wendy E. Mackay. 2000. Reifcation, Polymorphism
and Reuse: Three Principles for Designing Visual Interfaces. In Proceedings of the
working conference on advanced visual interfaces. https://doi.org/10.1145/345513.
345267

[11] Edward Benson, Amy X. Zhang, and David R. Karger. 2014. Spreadsheet Driven
Web Applications. In Proceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology. ACM, Honolulu Hawaii USA, 97–106. https:
//doi.org/10.1145/2642918.2647387

[12] Alan F. Blackwell, Carol Britton, Anna Cox, Thomas R. G. Green, Corin Gurr,
Gada Kadoda, Maria S. Kutar, Martin Loomes, Chrystopher L. Nehaniv, Marian
Petre, et al. 2001. Cognitive Dimensions of Notations: Design Tools for Cognitive
Technology. In International Conference on Cognitive Technology. Springer, 325–
341. https://doi.org/10.1007/3-540-44617-6_31

[13] Marcel Borowski, Janus Bager Kristensen, Rolf Bagge, and Clemens N. Klokmose.
2021. Codestrates v2: A Development Platform for Webstrates. Technical Report.

Aarhus University. https://pure.au.dk/portal/en/publications/codestrates-
v2-a-development-platform-for-webstrates(66e1d4d9-27da-4f6b-85b3-
19b0993caf22).html

[14] Mahil Carr. 1997. Prototyping and Software Development Approaches. (1997).
[15] Stefano Ceri, Piero Fraternali, and Aldo Bongio. 2000. Web Modeling Language

(WebML): A Modeling Language for Designing Web Sites. Computer Networks
33, 1-6 (June 2000), 137–157. https://doi.org/10.1016/S1389-1286(00)00040-2

[16] Kerry Shih-Ping Chang and Brad A. Myers. 2014. Creating Interactive Web
Data Applications with Spreadsheets. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology (UIST ’14). Association
for Computing Machinery, New York, NY, USA, 87–96. https://doi.org/10.1145/
2642918.2647371

[17] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jefrey Nichols, and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In Proceedings of the 30th Annual
Symposium on User Interface Software and Technology (UIST ’17). https://doi.org/
10.1145/3126594.3126651

[18] Biplab Deka, Zifeng Huang, and Ranjitha Kumar. 2016. ERICA: Interaction Mining
Mobile Apps. In Proceedings of the 29th Annual Symposium on User Interface
Software and Technology (Tokyo, Japan) (UIST ’16). ACM, New York, NY, USA,
767–776. https://doi.org/10.1145/2984511.2984581

[19] Donghua Deng, Guigang Zhang, ZhiYuan Gong, Zonglin Guo, and Phillip C-y
Sheu. 2008. Semantic Programming of Web-Enabled Database Applications. In
2008 IEEE International Workshop on Semantic Computing and Applications. 51–60.
https://doi.org/10.1109/IWSCA.2008.24

[20] Facebook Inc. 2021. Virtual DOM and Internals – React. Retrieved Novem-
ber 25, 2021 from https://reactjs.org/docs/faq-internals.html

[21] Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. 2000. Declara-
tive Specifcation of Web Sites with Strudel. (2000). https://doi.org/10.1007/
s007780050082

[22] Figma Inc. 2021. Figma. Retrieved November 25, 2021 from https://www.fgma.
com

[23] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce,
and Alan Schmitt. 2007. Combinators for Bidirectional Tree Transformations:
A Linguistic Approach to the View-Update Problem. ACM Transactions on
Programming Languages and Systems (TOPLAS) 29, 3 (2007). https://doi.org/10.
1145/1232420.1232424

[24] Amy Rae Fox, Philip Guo, Clemens Nylandsted Klokmose, Peter Dalsgaard,
Arvind Satyanarayan, Haijun Xia, and James D Hollan. 2020. Towards a Dy-
namic Multiscale Personal Information Space: Beyond Application and Docu-
ment Centered Views of Information. In Conference Companion of the 4th Inter-
national Conference on Art, Science, and Engineering of Programming. 136–143.
https://doi.org/10.1145/3397537.3397542

[25] Piero Fraternali and Paolo Paolini. 2000. Model-Driven Development of Web
Applications: The AutoWeb System. ACM Transactions on Information Systems
28, 4 (2000). https://doi.org/10.1145/358108.358110

[26] Google LLC. 2021. Blockly. Retrieved November 25, 2021 from https://developers.
google.com/blockly

[27] Mona Haraty, Joanna McGrenere, and Andrea Bunt. 2017. Online Customization
Sharing Ecosystems: Components, Roles, and Motivations. In Proceedings of
the 2017 ACM Conference on Computer Supported Cooperative Work and Social
Computing (Portland, Oregon, USA) (CSCW ’17). Association for Computing
Machinery, New York, NY, USA, 2359–2371. https://doi.org/10.1145/2998181.
2998289

[28] Jefrey Heer and Michael Bostock. 2010. Declarative Language Design for Inter-
active Visualization. IEEE Transactions on Visualization and Computer Graphics
16, 6 (Nov. 2010), 1149–1156. https://doi.org/10.1109/TVCG.2010.144

[29] Martin Hofmann, Benjamin Pierce, and Daniel Wagner. 2011. Symmetric Lenses.
ACM SIGPLAN Notices 46, 1 (2011), 371–384. https://doi.org/10.1145/1926385.
1926428

[30] Martin Hofmann, Benjamin Pierce, and Daniel Wagner. 2012. Edit Lenses. In
Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. 495–508. https://doi.org/10.1145/2103656.2103715

[31] Jim Hollan and Arvind Satyanarayan. 2018. Designing Cognitively Convivial
Physics for Dynamic Visual Information Substrates. In CHI 2018 Workshop on
Rethinking Interaction: From Instrumental Interaction to Human-Computer Partner-
ships. http://vis.csail.mit.edu/pubs/towards-cognitively-convivial-info-physics

[32] Daniel Jackson. 2015. Towards a Theory of Conceptual Design for Software. In
2015 ACM International Symposium on New Ideas, New Paradigms, and Refections
on Programming and Software (Onward!) (Pittsburgh, PA, USA) (Onward! 2015).
Association for Computing Machinery, New York, NY, USA, 282–296. https:
//doi.org/10.1145/2814228.2814248

[33] Daniel Jackson. 2021. The Essence of Software: Why Concepts Matter for Great
Design. Princeton University Press.

[34] Szymon Kaliski, Adam Wiggins, and James Lindenbaum. 2019. End-User Program-
ming. Retrieved November 25, 2021 from https://www.inkandswitch.com/end-
user-programming.html

https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.1007/978-3-540-73597-7_39
https://doi.org/10.5381/jot.2009.8.5.c5
https://doi.org/10.5381/jot.2009.8.5.c5
https://doi.org/10.1109/ICSE.2009.5070523
https://doi.org/10.1109/ICSE.2009.5070523
http://ilpubs.stanford.edu:8090/641/
https://doi.org/10.1145/3276954.3276963
https://doi.org/10.1109/TSE.2004.23
https://doi.org/10.1145/332040.332473
https://doi.org/10.1145/332040.332473
https://doi.org/10.1145/345513.345267
https://doi.org/10.1145/345513.345267
https://doi.org/10.1145/2642918.2647387
https://doi.org/10.1145/2642918.2647387
https://doi.org/10.1007/3-540-44617-6_31
https://pure.au.dk/portal/en/publications/codestrates-v2-a-development-platform-for-webstrates(66e1d4d9-27da-4f6b-85b3-19b0993caf22).html
https://pure.au.dk/portal/en/publications/codestrates-v2-a-development-platform-for-webstrates(66e1d4d9-27da-4f6b-85b3-19b0993caf22).html
https://pure.au.dk/portal/en/publications/codestrates-v2-a-development-platform-for-webstrates(66e1d4d9-27da-4f6b-85b3-19b0993caf22).html
https://doi.org/10.1016/S1389-1286(00)00040-2
https://doi.org/10.1145/2642918.2647371
https://doi.org/10.1145/2642918.2647371
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/2984511.2984581
https://doi.org/10.1109/IWSCA.2008.24
https://reactjs.org/docs/faq-internals.html
https://doi.org/10.1007/s007780050082
https://doi.org/10.1007/s007780050082
https://www.figma.com
https://www.figma.com
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/3397537.3397542
https://doi.org/10.1145/358108.358110
https://developers.google.com/blockly
https://developers.google.com/blockly
https://doi.org/10.1145/2998181.2998289
https://doi.org/10.1145/2998181.2998289
https://doi.org/10.1109/TVCG.2010.144
https://doi.org/10.1145/1926385.1926428
https://doi.org/10.1145/1926385.1926428
https://doi.org/10.1145/2103656.2103715
http://vis.csail.mit.edu/pubs/towards-cognitively-convivial-info-physics
https://doi.org/10.1145/2814228.2814248
https://doi.org/10.1145/2814228.2814248
https://www.inkandswitch.com/end-user-programming.html
https://www.inkandswitch.com/end-user-programming.html

Varv: Reprogrammable Interactive Sofware as a Declarative Data Structure CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

[35] Christian Kästner, Sven Apel, and Martin Kuhlemann. 2008. Granularity in Soft-
ware Product Lines. In 2008 ACM/IEEE 30th International Conference on Software
Engineering. 311–320. https://doi.org/10.1145/1368088.1368131

[36] Christian Kästner, Thomas Thum, Gunter Saake, Janet Feigenspan, Thomas Leich,
Fabian Wielgorz, and Sven Apel. 2009. FeatureIDE: A Tool Framework for Feature-
Oriented Software Development. In 2009 IEEE 31st International Conference on
Software Engineering. 611–614. https://doi.org/10.1109/ICSE.2009.5070568

[37] Alan Kay and Adele Goldberg. 1977. Personal Dynamic Media. Computer 10, 3
(March 1977), 31–41. https://doi.org/10.1109/C-M.1977.217672

[38] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jefrey Palm, and
William G. Griswold. 2001. An Overview of AspectJ. In ECOOP 2001 — Object-
Oriented Programming (Lecture Notes in Computer Science), Jørgen Lindskov
Knudsen (Ed.). Springer, Berlin, Heidelberg, 327–354. https://doi.org/10.1007/3-
540-45337-7_18

[39] Eugen Kiss. 2021. 7GUIs. Retrieved November 25, 2021 from https://eugenkiss.
github.io/7guis/

[40] Martin Kleppmann. 2017. Designing Data-Intensive Applications: The Big Ideas
Behind Reliable, Scalable, and Maintainable Systems (1st edition ed.). O’Reilly
Media, Boston.

[41] Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy E. Mackay, and
Michel Beaudouin-Lafon. 2015. Webstrates: Shareable Dynamic Media. In Proceed-
ings of the 28th Annual ACM Symposium on User Interface Software and Technology.
https://doi.org/10.1145/2807442.2807446

[42] Amy J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scafdi, Joseph Lawrance, Henry Lieberman, Brad Myers,
Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan Wiedenbeck. 2011.
The State of the Art in End-User Software Engineering. Comput. Surveys 43, 3
(April 2011), 1–44. https://doi.org/10.1145/1922649.1922658

[43] Butler Lampson. 2020. Hints and Principles for Computer System Design. (2020).
[44] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg, and

Saul Greenberg. 2018. Evaluation Strategies for HCI Toolkit Research. Association
for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3173574.
3173610

[45] Geofrey Litt, Peter van Hardenberg, and Orion Henry. 2021. Cambria: Schema
Evolution in Distributed Systems with Edit Lenses. In Proceedings of the 8th
Workshop on Principles and Practice of Consistency for Distributed Data. https:
//doi.org/10.1145/3447865.3457963

[46] Geofrey Litt and Daniel Jackson. 2020. Wildcard: Spreadsheet-Driven Cus-
tomization of Web Applications. In Conference Companion of the 4th International
Conference on Art, Science, and Engineering of Programming (Porto, Portugal)
(<programming> ’20). Association for Computing Machinery, New York, NY, USA,
126–135. https://doi.org/10.1145/3397537.3397541

[47] Geofrey Litt, Daniel Jackson, Tyler Millis, and Jessica Quaye. 2020. End-User
Software Customization by Direct Manipulation of Tabular Data. In Proceedings
of the 2020 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Refections on Programming and Software (Virtual, USA) (Onward! 2020).
Association for Computing Machinery, New York, NY, USA, 18–33. https://doi.
org/10.1145/3426428.3426914

[48] Geofrey Litt, Peter van Hardenberg, and Orion Henry. 2020. Project Cambria:
Translate your data with lenses. Retrieved November 25, 2021 from https://www.
inkandswitch.com/cambria.html

[49] Cristina Videira Lopes. 2020. Exercises in Programming Style (second edition ed.).
CRC Press, Boca Raton.

[50] Matt McCutchen, Shachar Itzhaky, and Daniel Jackson. 2016. Object Spread-
sheets: A New Computational Model for End-User Development of Data-Centric
Web Applications. In Proceedings of the 2016 ACM International Symposium on
New Ideas, New Paradigms, and Refections on Programming and Software. ACM,
Amsterdam Netherlands, 112–127. https://doi.org/10.1145/2986012.2986018

[51] Michael J. McGufn and Christopher P. Fuhrman. 2020. Categories and Com-
pleteness of Visual Programming and Direct Manipulation. In Proceedings of
the International Conference on Advanced Visual Interfaces (Salerno, Italy) (AVI
’20). Association for Computing Machinery, New York, NY, USA, Article 7.
https://doi.org/10.1145/3399715.3399821

[52] Douglas M. Mcllroy. 1968. Mass-Produced Software Components. Proceedings of
the 1st International Conference on Software Engineering (1968), 88–98.

[53] MDN Contributors. 2021. Array.prototype.map() - JavaScript | MDN. Retrieved No-
vember 25, 2021 from https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/Array/map

[54] MDN Contributors. 2021. Template Literals (Template Strings) - JavaScript |
MDN. Retrieved November 25, 2021 from https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Template_literals

[55] Giansalvatore Mecca, Paolo Atzeni, Alessandro Masci, Giuseppe Sindoni, and
Paolo Merialdo. 1998. The Araneus Web-Based Management System. SIGMOD
Rec. 27, 2 (jun 1998), 544–546. https://doi.org/10.1145/276305.276375

[56] Midas Nouwens and Clemens Nylandsted Klokmose. 2021. A Survey of Digital
Working Conditions of Danish Knowledge Workers. In Proceedings of 19th Euro-
pean Conference on Computer-Supported Cooperative Work. European Society for
Socially Embedded Technologies (EUSSET). https://doi.org/10.18420/ecscw2021_

n24
[57] Observable, Inc. 2021. Observable. Retrieved November 25, 2021 from https:

//observablehq.com
[58] Yoshiki Ohshima, Aran Lunzer, Bert Freudenberg, and Ted Kaehler. 2013. KScript

and KSWorld: A Time-Aware and Mostly Declarative Language and Interactive
GUI Framework. In Proceedings of the 2013 ACM International Symposium on
New Ideas, New Paradigms, and Refections on Programming & Software. 117–134.
https://doi.org/10.1145/2509578.2509590

[59] Dan R. Olsen. 2007. Evaluating User Interface Systems Research. In Proceedings
of the 20th Annual ACM Symposium on User Interface Software and Technology
(Newport, Rhode Island, USA) (UIST ’07). Association for Computing Machinery,
New York, NY, USA, 251–258. https://doi.org/10.1145/1294211.1294256

[60] OpenJS Foundation. 2021. Electron. Retrieved November 25, 2021 from https:
//www.electronjs.org

[61] Santiago Perez De Rosso, Daniel Jackson, Maryam Archie, Czarina Lao, and
Barry A. McNamara III. 2019. Declarative Assembly of Web Applications from
Predefned Concepts. In Proceedings of the 2019 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Refections on Programming and
Software (Athens, Greece) (Onward! 2019). Association for Computing Machinery,
New York, NY, USA, 79–93. https://doi.org/10.1145/3359591.3359728

[62] Felipe Pezoa, Juan L. Reutter, Fernando Suarez, Martín Ugarte, and Domagoj
Vrgoč. 2016. Foundations of JSON Schema. In Proceedings of the 25th Interna-
tional Conference on World Wide Web (Montréal, Québec, Canada) (WWW ’16).
International World Wide Web Conferences Steering Committee, Republic and
Canton of Geneva, CHE, 263–273. https://doi.org/10.1145/2872427.2883029

[63] Ian Piumarta and Kimberly Rose. 2010. Points of View: A Tribute to Alan Kay.
Viewpoints Research Institute, Glendale, Calif.

[64] Arvind Satyanarayan and Jefrey Heer. 2014. Lyra: An Interactive Visualization
Design Environment. Computer Graphics Forum 33, 3 (2014), 351–360. https:
//doi.org/10.1111/cgf.12391

[65] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jefrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (2017), 341–350. https://doi.org/10.
1109/TVCG.2016.2599030

[66] Arvind Satyanarayan, Ryan Russell, Jane Hofswell, and Jefrey Heer. 2016. Reac-
tive Vega: A Streaming Datafow Architecture for Declarative Interactive Visual-
ization. IEEE Transactions on Visualization and Computer Graphics 22, 1 (2016),
659–668. https://doi.org/10.1109/TVCG.2015.2467091

[67] Arvind Satyanarayan, Kanit Wongsuphasawat, and Jefrey Heer. 2014. Declarative
Interaction Design for Data Visualization. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology (Honolulu, Hawaii, USA)
(UIST ’14). Association for Computing Machinery, New York, NY, USA, 669–678.
https://doi.org/10.1145/2642918.2647360

[68] Kesler Tanner. 2019. Visual Design Tools in Support of Novice Creativity. Stanford
University.

[69] TodoMVC. 2021. TodoMVC. Retrieved November 25, 2021 from http://todomvc.
com

[70] Jacob VanderPlas, Brian Granger, Jefrey Heer, Dominik Moritz, Kanit Wong-
suphasawat, Arvind Satyanarayan, Eitan Lees, Ilia Timofeev, Ben Welsh, and Scott
Sievert. 2018. Altair: Interactive Statistical Visualizations for Python. Journal of
Open Source Software 3, 32 (Dec. 2018). https://doi.org/10.21105/joss.01057

[71] Lea Verou, Amy X. Zhang, and David R. Karger. 2016. Mavo: Creating Interactive
Data-Driven Web Applications by Authoring HTML. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology (Tokyo, Japan)
(UIST ’16). Association for Computing Machinery, New York, NY, USA, 483–496.
https://doi.org/10.1145/2984511.2984551

[72] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill
Howe, and Jefrey Heer. 2016. Voyager: Exploratory Analysis via Faceted Brows-
ing of Visualization Recommendations. IEEE Transactions on Visualization and
Computer Graphics 22, 1 (Jan. 2016), 649–658. https://doi.org/10.1109/TVCG.
2015.2467191

[73] Jonathan Zong, Dhiraj Barnwal, Rupayan Neogy, and Arvind Satyanarayan.
2020. Lyra 2: Designing Interactive Visualizations by Demonstration. IEEE
Transactions on Visualization and Computer Graphics 27, 2 (2020), 304–314. https:
//doi.org/10.1109/TVCG.2020.3030367

https://doi.org/10.1145/1368088.1368131
https://doi.org/10.1109/ICSE.2009.5070568
https://doi.org/10.1109/C-M.1977.217672
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1007/3-540-45337-7_18
https://eugenkiss.github.io/7guis/
https://eugenkiss.github.io/7guis/
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/3447865.3457963
https://doi.org/10.1145/3447865.3457963
https://doi.org/10.1145/3397537.3397541
https://doi.org/10.1145/3426428.3426914
https://doi.org/10.1145/3426428.3426914
https://www.inkandswitch.com/cambria.html
https://www.inkandswitch.com/cambria.html
https://doi.org/10.1145/2986012.2986018
https://doi.org/10.1145/3399715.3399821
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://doi.org/10.1145/276305.276375
https://doi.org/10.18420/ecscw2021_n24
https://doi.org/10.18420/ecscw2021_n24
https://observablehq.com
https://observablehq.com
https://doi.org/10.1145/2509578.2509590
https://doi.org/10.1145/1294211.1294256
https://www.electronjs.org
https://www.electronjs.org
https://doi.org/10.1145/3359591.3359728
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1145/2642918.2647360
http://todomvc.com
http://todomvc.com
https://doi.org/10.21105/joss.01057
https://doi.org/10.1145/2984511.2984551
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2020.3030367
https://doi.org/10.1109/TVCG.2020.3030367

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

A VARV LANGUAGE EXAMPLE

A.1 Abstract Concept Defnition

1 {
2 " concepts ": {
3 " todo ": {
4 " schema ": { " label ": " string " }
5 },
6 " todoList ": {
7 " schema ": {
8 " todos ": { " array ": " todo " },
9 " todosCount ": { " number ": {
10 " derive ": {
11 " properties ": [" todos "],
12 " transform ": [
13 { " length ": " todos " }
14]
15 }
16 }}
17 },
18 " actions ": {
19 " addNewTodo ": [
20 { " new ": {
21 " concept ": " todo ",
22 " with ": {
23 " label ": " @newTodoLabel "
24 },
25 " as ": " newTodo "
26 }} ,
27 { " append ": {
28 " property ": " todoList . todos ",
29 " item ": " $newTodo "
30 }}
31]
32 }
33 },
34 " todoInput ": {
35 " schema ": {
36 " text ": " string "
37 },
38 " actions ": {
39 " activateInput ": [
40 { " get ": {
41 " property ": " todoInput . text "
42 }} ,
43 { " set ": { " text ": "" }} ,
44 { " addNewTodo ": {
45 " newTodoLabel ": " $get "
46 }}
47]
48 },
49 " mappings ": {
50 " text ": [" memory "]
51 }
52 }
53 }
54 }

Listing 1: Example of an abstract concept defnition of a tod
list app consisting of three concepts.

Borowski, et al.

A.2 Concrete Concept Defnition

1 {
2 "concepts ": {
3 "todo ": {
4 "actions ": {
5 "deleteOnClick ": {
6 "when": { "click": {
7 "view": "deleteButton "
8 }},
9 "then": "remove "

10 }
11 }
12 },
13 "todoInput ": {
14 "actions ": {
15 "activateInput ": {
16 "when": [
17 { "key ": {
18 "key ": "Enter ",
19 "focus": "todoInput "
20 }},
21 { "click": {
22 "view": "addTodoButton"
23 }}
24]
25 }
26 }
27 }
28 }
29 }

Listing 2: Example of an concrete concept defnition of a
todo list app.

A.3 Template

1 <dom -view -template >
2 <template name ="todo ">
3 <div >
4 {text}
5 Delete
6 </div >
7 </template >
8 <h2>Todo List </h2>
9 <div concept =" todoInput ">

10 <h3>Add New Todos </h3>
11 <input value ="{ text}" />
12 <button view =" addTodoButton">Add Todo </button >
13 </div >
14 <div concept =" todoList ">
15 <h3>Todos ({ todosCount }) </h3>
16 <div class =" list ">
17 <div property ="todos ">
18 <template -ref template -name =" todo ">
19 </template -ref >
20 </div >
21 </div >

 22 </div >
23 </dom -view -template >

Listing 3: Example of a template of a todo list app.

o

Varv: Reprogrammable Interactive Sofware as a Declarative Data Structure CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

A.4 Custom Action

1 /**
2 * Usage: define a function "foo " in global scope.
3 * { "customJS ": { "func ": "foo " }}
4 */
5 class CustomJSAction extends Action {
6 constructor(name , options) {
7 if (typeof options === "string ") {
8 options = { func: options };
9 }

10 super(name , options);
11 }
12

13 async apply (contexts , actionArguments) {
14 if (this . options . func == null) {
15 throw new Error (" ' func ' must be set ") ;
16 }
17

18 return this . forEachContext (
19 contexts ,
20 actionArguments ,
21 async (context , options) => {
22 let func = options . func ;
23

24 if (window [func] == null) {
25 throw new Error (`'${ func }' not defined `);
26 }
27

28 if (typeof window [func] !== "function ") {
29 throw new Error (`'${ func }' is not a function `);
30 }
31

32 return window [func](context , options);
33 }
34);
35 }
36 }
37 Action.registerPrimitiveAction (" customJS ",
38 CustomJSAction);
39 window.CustomJSAction = CustomJSAction;

Listing 4: Example action which lets users run arbitrary
global functions as actions.

Action Name Description

"concat" Concatenates an array of strings or vari-
ables to a new string.

"enums" Returns an array of all possible enums of a
string property.

"length" Returns the length of a string.
"textTransform" Transforms a string to uppercase, lower-

case, or capitalization.

B LIST OF PRIMITIVE ACTIONS

B.1 Concept Actions
Action Name Description

"count" Returns the count of instances of a given concept
type. Filtering like in "where" is possible.

"exists" Returns a boolean variable of whether there ex-
ist instances of a given concept type. Filtering
like in "where" is possible.

"get" Returns the value of a property of either the
current target or from another concept instance.

"new" Creates a new instance of a given concept with
the given properties. Has an option to not select
the newly created instance.

"remove" Removes the current target concept instance or
instances stored in a variable.

"set" Sets the value of a property or variable.

B.2 Control Flow Actions
Action Name Description

"eval" Returns the boolean value of a fltering
expression.

"exit" Terminates the action chain.
"limit" Limits the number of context to a given

count starting from the frst or last.
"run" Runs an action with a copy of the current

event and then continues with the action
chain independent of the outcome of the
other action.

"select" Selects all instances of a given concept
type. Filtering like in "where" is possible.

"storeSelection" Stores the current selected targets in a
variable in the event.

"switch" Tests conditions for several branches and
executes the action chain of the branch
that matches. A default branch can be set
and it contains an option to continue after
a successful branch.

"wait" Stops and waits with continuing the ac-
tion chain for a given duration.

"where" Filters the current selection according to a
given property or variable condition. Con-
ditions can be combined using “and”, “or”,
and “not.”

B.3 Boolean Actions
Action Name Description

"toggle" Inverts a boolean property or variable.

B.4 String Actions

B.5 Number Actions
Action Name Description

"calculate" Calculates a given mathematical expression.
"decrement" Decrements a number property or variable by a

given value.
"increment" Increments a number property or variable by a

given value.
"random" Returns a random number within a given range.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

B.6 Array Actions
Action Name Description

"append" Appends an item to an array property or vari-
able.

"items" Returns the items of an array. Allows for fl-
tering items.

"length" Returns the length of an array.
"prepend" Prepends an item to an array.

"removeFirst" Removes the frst item from an array.
"removeItem" Removes the item on the given index from an

array.
"removeLast" Removes the last item from an array.

C LIST OF PRIMITIVE TRIGGERS

C.1 Reactive Triggers
Trigger Name Description

"action" Triggers when another given action is
executed. Contains an option to specify
whether it should trigger before or after the
other action was executed.

"interval" Triggers in intervals after a given time.
"stateChanged" Triggers when a given concept or property

changes.

C.2 View Triggers
Trigger Name Description

"click" Triggers when a given concept, property, or
view is clicked.

"key" Triggers if a given key is pressed and optionally
a concept, property, or view is in focus.

"mouseDown" Triggers when a given concept, property, or
view receives a mouseDown event.

"mouseMove" Triggers when a given concept, property, or
view receives a mouseMove event.

"mouseUp" Triggers when a given concept, property, or
view receives a mouseUp event.

D LIST OF DATA STORES
Data Store Name Description

"dom" Stores data in the DOM of a website or web-
strate. Listens to changes to these elements.

"memory" Stores data in memory that gets emptied
after a page refresh.

"localStorage" Stores data in the localStorage.

Borowski, et al.

E LIST OF EXTENSIONS
Extension Name Description

"inject" Adds the schema and actions of one or mul-
tiple source concepts into a target concept.
Properties or actions with the same name are
overwritten by injected concepts in the order
they are specifed.

"join" Combines one or multiple source concepts
into a new concept. Properties and actions
with the same name are handled like in the
"inject" extension.

"omit" Removes the given properties and actions
from a target concept.

"pick" Takes the given properties and concepts of
a source concept and creates a new concept
based on those.

F LIST OF DOM VIEW TEMPLATE TAGS

F.1 Template Tags
Tag Name Description

<dom-view-template> Indicates the start and
end of a template in the
DOM view.

<template name="some-name"> Allows to create named
templates that can be
reused using template
references.

<template-ref name="ref-name"> Allows to reference a
named template and in-
sert it.

F.2 Template Attributes
Attribute Name Description

concept Indicates that the given element should be
rendered for each instance of the given con-
cept.

property Indicates that the given element refers either
to a property with type concept or to an array
concept.

view Indicates that the given element is a view that
can be referred to in concept defnition fles.

value Indicates that the given value of an text input,
select or checkbox should be synchronized
with the given property.

	Abstract
	1 Introduction
	2 The Varv Language
	2.1 Design Goals
	2.2 Language Primitives
	2.3 Event Flow

	3 The Varv Architecture
	3.1 Concept Definitions and the Event Engine
	3.2 Templates and the View Layer
	3.3 Mappings and the Data Layer

	4 Implementation
	4.1 Building on Webstrates, Codestrates v2, and Cauldron
	4.2 Event Engine
	4.3 Data Stores
	4.4 Views

	5 Case Studies
	5.1 Case Study 1: Todo List
	5.2 Case Study 2: Board Game Toolkit
	5.3 Other Examples

	6 Tooling
	6.1 Authoring Tools
	6.2 Debugging Tools

	7 Related Work
	7.1 Declarative Programming
	7.2 Alternative Representations of Web Applications
	7.3 Software Development Paradigms

	8 Discussion
	8.1 Limitations
	8.2 Future Work

	9 Conclusion
	Acknowledgments
	References
	A Varv Language Example
	A.1 Abstract Concept Definition
	A.2 Concrete Concept Definition
	A.3 Template
	A.4 Custom Action

	B List of Primitive Actions
	B.1 Concept Actions
	B.2 Control Flow Actions
	B.3 Boolean Actions
	B.4 String Actions
	B.5 Number Actions
	B.6 Array Actions

	C List of Primitive Triggers
	C.1 Reactive Triggers
	C.2 View Triggers

	D List of Data Stores
	E List of Extensions
	F List of DOM View Template Tags
	F.1 Template Tags
	F.2 Template Attributes

