
A Platform for Large-Scale Machine
Learning on Web Design

Arvind Satyanarayan
SAP Stanford Graduate Fellow
Dept. of Computer Science
Stanford University
353 Serra Mall
Stanford, CA 94305 USA
arvindsatya@cs.stanford.edu

Maxine Lim
Dept. of Computer Science
Stanford University
353 Serra Mall
Stanford, CA 94305 USA
maxinel@stanford.edu

Scott R. Klemmer
Dept. of Computer Science
Stanford University
353 Serra Mall
Stanford, CA 94305 USA
srk@cs.stanford.edu

Copyright is held by the author/owner(s).
CHI’12, May 5–10, 2012, Austin, Texas, USA.
ACM 978-1-4503-1016-1/12/05.

Abstract
The Web is an enormous and diverse repository of design
examples. Although people often draw from extant
designs to create new ones, existing Web design tools do
not facilitate example reuse in a way that captures the
scale and diversity of the Web. To do so requires using
machine learning techniques to train computational
models which can be queried during the design process. In
this work-in-progress, we present a platform necessary for
doing such large-scale machine learning on Web designs,
which consists of a Web crawler and proxy server to
harvest and store a lossless and immutable snapshot of
the Web; a page segmenter that codifies a page’s visual
layout; and an interface for augmenting the segmentations
with crowdsourced metadata.

Author Keywords
Web design; examples; machine learning.

ACM Classification Keywords
H.5.4 [Information interfaces and presentation]:
Hypertext/ Hypermedia - Theory.

Introduction
Design is difficult and designers typically spend most of
their time ideating rather than executing. As a result,
they often rely on examples for inspiration [4] and to

facilitate design work [8]. In the scope of Web design, the
several billion pages that comprise the Web provide a
large corpus of diverse design examples. While tools such
as a browser’s “view source” functionality [3], template
galleries, and curated design repositories have begun to
allow designers to harness these resources, they are limited
in both usefulness and scale. For example, online
repositories are manually curated by designers; therefore
they usually contain a few thousand pages at most, which
inadequately capture the diversity of Web designs.
Furthermore, browsing designs is inefficient, typically
restricted to page-by-page browsing or filtering on some
basic, manually identified attributes such as color.

The unstructured, constantly changing nature of the Web,
and its sheer size, pose challenges that call for an
algorithmic approach to example-based Web design tools.
Algorithms would not only allow these tools to pull from a
larger pool of examples, but they would also enable a new
class of applications. For example, consider a tool that
could abstract a designer’s partially-formed design idea as
a search specification and extract from an extensive
corpus design completions containing the input
parameters. Such an application would be difficult to
build with a manually curated and classified corpus.

Hard-coded, formulaic algorithms, however, would also
not account for the diversity of Web design patterns, nor
could they simulate non-rule-based dimensions —
creativity, for example. A more suitable approach is
machine learning: an algorithmic method that “learns”
the characteristics of a domain, Web design in our case,
from a “training set” of examples and makes predictions
about these characteristics on new data.

To perform machine learning on Web designs, our training
set would consist of a corpus of Web pages such that:

1. A page renders the same way every time it is
requested — to generate accurate predictors,
machine learning algorithms need to be trained on a
constant, unchanging training set.

2. All pages within the corpus are complete copies of
their online counterparts: all content they request
must be stored in our corpus, and source code
cannot be modified — any missing content, or
modified source code, could introduce rendering or
behavioral discrepancies into our corpus and corrupt
classifiers trained on this data, causing them to
perform poorly when run on live Web pages.

3. A representation of a page that captures the
structural relationships in its visual layout is
available — classifiers that rely solely on page
markup would perform poorly as designers can use
scripting and advanced CSS techniques to arbitrarily
reposition content such that visually salient regions
no longer correspond to the Document Object
Model (DOM) [6].

4. The corpus is scalable and preserves the graph
structure of the Web (links between pages and their
resources) is key — it prevents duplicates being
saved to the corpus, and the data could be useful
for certain learning applications.

These requirements make it impossible to use the Web
directly, as the DOM is the only representation readily
available, and content changes as frequently as every page
load. Thus, we need create a snapshot of the Web by

compiling a corpus that meets these requirements. There
have been several projects to build such corpora [9, 7, 2]
by using Web crawlers to identify and download pages and
resources such as images, stylesheets and scripts.

Proxy Server

Corpus
Database

Web Crawler

Browser
Thread

Browser
Thread ...

URLs

The Web Bento

Raw
Content

Bento
Nodes

Bento
Features

Machine
Learning

Algorithms

Applications

Interfaces

Web Mode Corpus-Only Mode

Figure 1: An overview of the system architecture.

Although Web crawlers
preserve the Web’s graph
structure, thus scaleably
building our corpus,
they rely on heuristics
to identify URLs
to crawl [5] and may,
for example, miss those
embedded in CSS or
requested dynamically in
Javascript. This behavior
would violate our second
design goal. Additionally,
existing crawlers
treat URLs as uniquely
identifying content [5],
and hence only crawl
them once. This does not
account for cases where
different content may
share a common URL —
for example, a Javascript
file that is dynamically
generated — and would
again violate our second

design goal. Page archivers [1] are an alternative to Web
crawlers. They leverage a Web browser to download a
page and package it together with an individual copy of
all resources it uses. With this approach, we lose the
Web’s graph structure and also begin to store duplicates
of resources, violating our fourth design goal. To ensure

consistent offline rendering, archivers rewrite the source
HTML to point to these local copies and strip any
scripting, contrary to our second design goal.

To meet these design goals, we developed a platform for
large-scale machine learning on Web designs. As Fig. 1
shows, we use a Web crawler and proxy server
combination to build a complete corpus of raw Web page
and resource content. This raw content is then processed
by Bento [6], a page segmenting algorithm which
produces a representation of the visual structure of a
page. Finally, a crowdsourced label gathering application
augments our corpus with keywords which could serve as
a seed for machine learning.

The Infrastructure
Web Crawler and Proxy Server
The lightweight, multithreaded Web crawler maintains a
list of URLs to crawl and then recursively loads a URL
and analyzes it for additional URLs to add to the list;
URLs are not treated as uniquely identifying content.
Each Web crawler thread loads URLs in an embedded
Webkit1 browser, and the task of downloading content is
delegated by configuring the browser to use a custom
proxy server. Every request made by the browser, and
every response it receives from the Internet, goes through
the proxy server, which writes this information to our
corpus. As URLs are no longer considered unique, to
prevent the corpus from burgeoning, we implement a
“content-seen” test [5] to check if it already exists in our
corpus, and only saved if it does not. With this pipeline,
we are guaranteed that the proxy server automatically sees
every request a page makes for a resource, without any
custom heuristics, and yet scalably builds our corpus.

1http://www.webkit.org/

The proxy server, however, simply sees a series of requests
and their corresponding responses — as HTTP is a
stateless protocol, it is not able to identify which page
requested what resource, a problem exacerbated by
multiple Web crawler threads making concurrent requests
through the proxy. This relationship is crucial to
preserving the Web’s graph within our corpus.

Web Crawler
Browser Proxy Server Corpus

Database
The Web

GET http://google.com/
Bricolage-ISAPage: 1

HTTP/1.1 200 OK
<html><head>...

storePage()

page_id: 13

HTTP/1.1 200 OK
Bricolage-PageID: 13

<html><head>...

GET http://google.com/
Bricolage-ISAPage: 1

GET http://google.com/logo.png
Bricolage-PageID: 13

GET http://google.com/styles.css
Bricolage-PageID: 13

Figure 2: Custom headers are used to overcome HTTP’s statelessness by
identifying which page made what request. This allows us to preserve the
Web’s graph structure in our corpus.

To easily identify
these relationships,
we introduced
a set of custom
HTTP headers into
the pipeline as shown
in Fig. 2. The Web
crawler requests a
page and supplies the
Bricolage-ISAPage

header to identify
the URL as a “page”
as opposed to a
“resource”. When the
proxy server receives
the page’s content
from the Internet, and
saves it to our corpus,
a unique identifier
is generated, which
is transmitted back
to the Web crawler’s
browser through the
Bricolage-PageID

header. This header is then attached to subsequent
resource requests, which allows the proxy server to
recreate the graph within our corpus.

As Fig. 1 shows, the system also contains a “corpus-only
mode.” In this mode, the proxy server does not pass
requests to the Web, but rather serves content directly
from our corpus; if it is not able to find the URL in the
corpus, it responds with a 404 error. This mode,
facilitated by adding a custom Bricolage-FromCache

header to requests, allows consistent offline rendering
without modifying any source code.

Bento: A Page Segmenting Algorithm
Each page is passed through the Bento page
segmenter [6] which wraps all inline content with

tags, rearranges the DOM tree relationships to correspond
to visual containment and finally augments the tree to
remove nodes that do not contribute to the visual layout,
and add those that do. Fig. 3 shows an example Bento
tree, and highlights that all content is a leaf node in the
tree, and non-leaf nodes correspond to screen space. For
maximum granularity, each Bento node, and its associated
style features, are stored as individual records within our
corpus database.

body

#header

#logo #nav

#content

h1.section

.col .col .col

#footer

Figure 3: Bento nodes better correspond to visually salient
regions of a page.

Crowdsourced Label-Collecting

Figure 4: Label gathering interface.

Correctly and effectively
collecting Web pages
into a corpus provides
the constant training
set required for machine
learning, but supplying
visual, design-oriented
features associated with
the collected pages for
the learning algorithms
to use is also critical
for usefulness. To allow
for this functionality,
labels corresponding to
the features in question
must be stored with the
pages with which they are
associated. These labels

may express the stylistic features of a Web page, its
content and purpose, or any other characteristics that may
be of interest to designers. While labels that can be drawn
from the lower-level representation of a saved Web page
can be applied to the page automatically, less concrete
characteristics, which may be based on a holistic visual
assessment of a Web design, do not lend themselves well
to automated classification. For example, automatically
and accurately judging whether a design is minimalist or
elegant is challenging because there does not exist a set of
criteria that can be easily and methodically checked and
that will also consistently result in an accurate
classification. Therefore a viable solution must make
consistent and accurate classifications as well as maintain
the scalability that comes with automated labeling. We
propose a label-collecting interface, shown in Fig. 4, that
allows us to take advantage of crowdsourcing. If label

application is delegated to Web designers themselves, we
can attain accurate style labels; if a large enough audience
is targeted, scalability can be achieved as well.

To allow designers to apply labels to designs, we built a
label-collecting interface. Designers were sent to this
interface and asked to submit stylistic keywords describing
a number of Web pages in our corpus. The interface
includes a set of directions for entering labels into the
database, a screenshot of the current page, a list of
keywords the designer has already applied to the page,
and appropriate fields for label submission and page
navigation. Upon access to the interface, a unique ID is
randomly generated for the user, and this ID is maintained
throughout the task. The corpus of Web pages to be
labeled loads, and pages are presented to the user in
random order. For each page, the user enters and submits
a number of keywords to describe it. The keyword field is
enhanced with a jQuery-backed autocomplete feature
drawing from a dictionary of valid English keywords that
have been applied to pages in the database. The
dictionary is refreshed after every page entry. Upon
submission each new keyword, along with the associated
user ID and Web page, is entered into a SQLite database
and appears on the screen so that users can track which
keywords they have already entered. Keyword entries and
page navigation are implemented using AJAX calls to
avoid refreshing the interface page.

Discussion and Conclusion
To assess the feasibility of the label-collecting interface,
we ran a preliminary trial to gather style labels for a
300-page corpus by hiring crowdsourced designers to apply
labels to the pages. The interface allowed us to collect
over 3,000 style labels, shown as a tag cloud in Fig. 5,
that appropriately described their corresponding pages.

However, though we were able to pay designers to perform
this task for the purposes of this trial, providing such
compensation does not allow for scalability. If designers
had incentive to apply labels themselves, then payment
would not be necessary. By building a searchable interface
for our corpus based on the collected labels, we would be
able to offer designers a powerful exploratory tool for
inspiration unlike any design repository currently available.
The usefulness of the tool would allow for scalability, since
designers would have an incentive to supply labels for the
underlying corpus in order to improve their experience
with the interface.

Figure 5: A tag cloud of the 3,000 labels
collected in our preliminary trial. Notice
that some style words are used more
commonly than others.

The interface described is only one of the many
applications that could stem from our corpus. Trained
programs may eventually be able to automatically and
accurately classify designs based on stylistic features.
Design tools in the same vein as the searchable interface
described may provide designers with relevant inspirational
examples when given a partially complete design or an
existing design example as input. They might even
generate original designs based on a set of requirements
specified by the designer. Additionally, browser extensions
to crowdsource corpus-building can be developed to
facilitate augmenting the corpus itself and increase the
range of features it can support. To more thoroughly
grasp the power of machine learning in the context of
Web design, we look forward to building these applications
and investigating their implications for designers.

References
[1] Mozilla archive file format. http://maf.mozdev.org/.
[2] Cathro, W., Webb, C., and Whiting, J. Archiving the

web: The pandora archive at the national library

australia. National Library of Australia Staff Papers, 0
(2009).

[3] Gibson, D., Punera, K., and Tomkins, A. The volume
and evolution of web page templates. In Special
interest tracks and posters of the 14th international
conference on World Wide Web, ACM (2005),
830–839.

[4] Herring, S., Chang, C., Krantzler, J., and Bailey, B.
Getting inspired!: understanding how and why
examples are used in creative design practice. In
Proceedings of the 27th international conference on
Human factors in computing systems, ACM (2009),
87–96.

[5] Heydon, A., and Najork, M. Mercator: A scalable,
extensible web crawler. World Wide Web 2, 4 (1999),
219–229.

[6] Kumar, R., Talton, J., Ahmad, S., and Klemmer, S.
Bricolage: Example-based retargeting for web design.
In Proceedings of the 2011 annual conference on
Human factors in computing systems, ACM (2011),
2197–2206.

[7] Lampos, C., Eirinaki, M., Jevtuchova, D., and
Vazirgiannis, M. Archiving the greek web. In 4th
International Web Archiving Workshop (IWAW04)
(2004).

[8] Lee, B., Srivastava, S., Kumar, R., Brafman, R., and
Klemmer, S. Designing with interactive example
galleries. In Proceedings of the 28th international
conference on Human factors in computing systems,
ACM (2010), 2257–2266.

[9] Mohr, G., Stack, M., Rnitovic, I., Avery, D., and
Kimpton, M. Introduction to heritrix. In 4th
International Web Archiving Workshop (2004).

http://maf.mozdev.org/

	Introduction
	The Infrastructure
	Web Crawler and Proxy Server
	Bento: A Page Segmenting Algorithm
	Crowdsourced Label-Collecting

	Discussion and Conclusion
	References

