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Figure 1: The Lyra visualization design environment, here used to recreate William Playfair’s classic chart comparing the price
of wheat and wages in England. Lyra enables the design of custom visualizations without writing code.

Abstract
We present Lyra, an interactive environment for designing customized visualizations without writing code. Using
drag-and-drop interactions, designers can bind data to the properties of graphical marks to author expressive
visualization designs. Marks can be moved, rotated and resized using handles; relatively positioned using con-
nectors; and parameterized by data fields using property drop zones. Lyra also provides a data pipeline interface
for iterative, visual specification of data transformations and layout algorithms. Visualizations created with Lyra
are represented as specifications in Vega, a declarative visualization grammar that enables sharing and reuse. We
evaluate Lyra’s expressivity and accessibility through diverse examples and studies with journalists and visual-
ization designers. We find that Lyra enables users to rapidly develop customized visualizations, covering a design
space comparable to existing programming-based tools.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces]: User Interfaces—GUI

1. Introduction

When creating custom visualizations, designers must con-
tend with a variety of concerns, including perceptual effec-
tiveness, audience familiarity and aesthetic choices. In addi-
tion to data values, a designer may seek to convey the se-
mantics and connotations of the data and the context of data
collection. Judiciously designed visualizations can foster ef-
fective communication and engage interest.

Consider U.S. Gun Deaths in 2013 [Per13] from the firm
Periscopic (Figure 2). Thin orange lines trace across a black
background in an animated arc, depicting the span of peo-

ple’s lives. They abruptly halt, and dots drop to a base-
line, to symbolize lives lost to gun violence. The arcs re-
sume their trajectories, colored grey to depict the remaining
years the victims might have lived. While a bar or line chart
could communicate these statistics, the unique design deci-
sions seek to convey the data in tandem with the emotional
weight of this lost potential. As the designers note, “What
the [dataset] does not contain is an assessment of the poten-
tial life that was stolen from these individuals” [Per13].

Designing visualizations of this caliber is challenging, and
current design tools lie along a spectrum of expressiveness.
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Figure 2: U.S. Gun Deaths in 2013, a visualization by Periscopic (left). The use of arcs and color reflects the emotional weight
of its subject: the devastating effect of gun violence. A static version of the visualization recreated in Lyra (right).

At one end are chart typologies [Wil05]: pre-defined palettes
of chart types (bar charts, treemaps, etc.) that make numer-
ous design decisions on behalf of the user. By trading expres-
siveness for efficiency, chart typologies inhibit the creation
of novel visualization designs. At the other end are vector
drawing tools [Tuf] and programming [Pro, BOH11]. Most
drawing tools do not provide data-driven abstractions, re-
sulting in time-consuming and error-prone work. Program-
ming imposes a wide gulf of execution [HHN85] and a poor
“closeness of mapping” [GP96] between language syntax
and graphical output. Some visualization systems [BH09,
BOH11, Wic09] reduce this gulf with grammars that de-
scribe visual primitives. However, using text to express vi-
suals incurs a significant articulatory distance [HHN85].

We present Lyra, an interactive design environment for
custom visualization that is comparable in expressiveness to
programming-based tools. With Lyra, designers add graph-
ical marks to a canvas and associate data fields with mark
properties. Visual data pipelines enable data transformation
and advanced layout algorithms. Lyra incorporates familiar
interactions found in drawing and diagramming tools: Han-
dles can be used to interactively move, rotate, and resize
marks; connectors relatively position marks; and drop zones
allow data binding via drag-and-drop. By exposing all mark
properties as data binding targets, Lyra provides the fine-
grained control needed to produce unique visualizations. Di-
rect manipulation of marks further reduces the articulatory
distance for design [GP96, HHN85].

Informed by prior work such as the Grammar of Graphics
[Wil05, Wic09], Protovis [BH09, HB10] and D3 [BOH11],
Lyra represents visualizations using the Vega visualization
grammar [Veg13]. Users can export their designs as images
or as reusable components in Vega’s JavaScript Object No-
tation (JSON) format. As a result, Lyra visualizations can
easily be published on the web, shared and repurposed. In
short, Lyra contributes a novel interactive system for visual
specification of grammar-driven visualizations.

We focus on the problem of crafting custom visual encod-

ings. Static visualizations continue to be widely used across
online and print media. Though important, we leave spec-
ification of related interaction techniques (e.g., brushing &
linking) to future work. The current open-source Lyra sys-
tem provides a platform for further design tool research.

To evaluate Lyra’s expressiveness, we demonstrate its use
to create diverse example graphics that are difficult or impos-
sible to construct with existing interactive tools. To evalu-
ate accessibility, we conducted a first-use study with design-
ers and journalists. Participants described Lyra’s interaction
model as “natural” and “intuitive”, and successfully used
Lyra to rapidly prototype custom visualizations.

2. Related Work

Lyra builds on visualization systems research spanning chart
typologies, toolkits, grammars and graphical design tools.

2.1. Chart Typologies

Chart templates, as found in spreadsheets and online services
(e.g., Many Eyes [VWvH∗07], Google Fusion Tables), are
a common means of creating visualizations. Such chart ty-
pologies [Wil05] involve selection rather than creation, re-
quiring a few clicks to produce a chart. However, users are
restricted to the available chart types and may only cus-
tomize a small number of parameters. Lyra supports a more
expressive range of visualization designs, without using a
textual programming language. Moreover, Lyra exports vi-
sualization components that can extend existing typologies.

2.2. Visualization Toolkits

To enable custom visualizations, researchers have developed
a variety of programming toolkits [LAC∗92, Fek04, Wea04,
HCL05, Fla13]. Some [Fek04, Wea04] provide a class hier-
archy of visualization widgets, where new visualizations are
created by subclassing existing components or writing new
ones. Others [Fla13, HCL05, LAC∗92] create visualizations
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using composable operators for data transformation, layout
and encoding. The operators allow fine-grained control over
visual output and are amenable to graphical data flow spec-
ifications [LAC∗92]. However, novel designs often require
programmers to create new operators [HB10], limiting these
tools to software engineers. Lyra is intended to make custom
visualization design accessible to a less technical audience.

2.3. Visualization Grammars

In The Grammar of Graphics [Wil05], Wilkinson argues
we should “shun chart typologies” and introduces a gram-
mar for specifying a wide range of data graphics. His gram-
mar proposes a set of primitives for statistical graphics: data
and scale transforms; visual elements with “aesthetic” at-
tributes; and guides such as legends and axes. Wickham’s
ggplot2 [Wic09, Wic10] follows this design, and a similar
formulation underlies Tableau [STH02]. By formalizing a
combinatorial design space, these tools are more expressive
than chart typologies. However, they are designed to support
rapid exploratory analysis, not custom visualization design.
These systems make many default decisions on behalf of the
user and limit one’s control over visual design parameters.

In contrast, Protovis [BH09] and D3 [BOH11] are
grammar-based systems in which the properties of graphical
marks such as bars, lines, arcs, and text labels are param-
eterized as functions of an underlying data set. Any num-
ber of mark instances, backed by one or more data sets,
are composed to form a graphic. Protovis [BH09, HB10]
demonstrates how a lexicon of basic mark types can support
a diversity of visualization designs. D3 (Data-Driven Docu-
ments) [BOH11] applies a similar model directly to elements
of a web page’s Document Object Model. Data elements are
associated with graphical objects via a relational join opera-
tion; as data changes objects may enter, exit, or update in the
display [HB10,BOH11]. Custom property definitions can be
defined and animated across each of these phases. However,
both of these tools require JavaScript programming.

2.4. Interactive Visualization Design Tools

Lyra appropriates common direct manipulation techniques
found in vector-based drawing tools such as Adobe Illus-
trator. These systems, often used to produce static graphics,
offer flexibility and a close articulatory distance [HHN85].
However, they do not provide visualization-specific abstrac-
tions, resulting in a time-consuming and error-prone process.

Recently, Bret Victor demonstrated a data-driven drawing
tool [Vic13] that combines geometric constraints with im-
perative procedures over data. Alongside an interactive can-
vas and data table viewer, the tool includes programming
structures with lexical scope and control flow via loops and
conditionals. To form a basic bar chart, designers must de-
fine loops to create and position each bar. The tool supports

purely geometric constructions, rendering some layouts in-
expressible. Lyra combines manipulation of marks with a
declarative approach to design [HB10]. When a designer
associates a mark with a data set, Lyra instantiates a mark
instance for each datum; control flows such as loops are im-
plicit. More advanced algorithms, such as layout routines,
are accessible as part of a graphical data pipeline.

Lyra’s use of drag-and-drop to associate data fields with
mark properties is inspired by Tableau and its predecessor
Polaris [STH02]. In Tableau, a “schema” panel lists avail-
able data fields which can be dragged to “shelves” on the
periphery of the visualization to specify data groupings and
visual encodings. Lyra extends this mode of interaction into
the visualization canvas. Property drop zones overlay mark
instances during drag operations, providing a more direct
data-mapping target. Lyra also provides property inspec-
tors akin to Tableau’s shelves, but which expose more fine-
grained details to enable custom design. Whereas Tableau
is optimized for efficient construction of analytic graphics,
Lyra is optimized for expressive design control.

Roth et al.’s SageBrush [RKMG94] supports similar in-
teractions. Users can drag-and-drop “partial prototypes” for
spatial encodings and “grapheme” (mark) primitives such as
lines and bars. Custom grapheme properties are manually
selected via menus, then exposed as drop-target icons. Lyra
refines the SageBrush model in several ways. Partial pro-
totypes in SageBrush implicitly define scale transforms and
layout; Lyra’s grammar decouples these to support richer de-
signs. Lyra’s data pipelines provide an extensible set of data
transformations; different marks can be driven by unique
pipelines and composed. Lyra eschews iconic abstractions
in favor of direct drop zones for mark properties, without
need of explicit enumeration via menus. In summary, Lyra
is designed to support a larger expressive space and more
fine-grained control than either SageBrush or Tableau.

3. The Design of Lyra

Lyra was developed through an iterative user-centered de-
sign process. We held formative interviews with representa-
tive users, such as visualization designers and journalists, to
understand their design process and the limitations of their
existing tools. These users evaluated low-fidelity prototypes
and later interactive prototypes. In this section, we describe
the constituent components of the Lyra system, and justify
our design decisions based on the results of our evaluations.

3.1. The Vega Visualization Grammar

Lyra is built atop the Vega [Veg13] visualization grammar,
which provides a set of basic abstractions necessary for con-
structing visualizations. These abstractions are in turn drawn
from The Grammar of Graphics [Wil05] and prior visualiza-
tion toolkits including Protovis [BH09] and D3 [BOH11].
Lyra uses the Vega grammar as both an internal model and
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external file format. Like Protovis and D3, Vega uses data
joins and graphical marks to enable a breadth of designs.
Unlike these systems, Vega uses a declarative JSON format
and defines reusable chart components. Lyra visualizations
can be exported as Vega JSON files to drive web-based visu-
alizations, or as static PNG or SVG images.

Data. Lyra assumes a tabular data model: a collection of
records with named attributes of a given data type. A data ta-
bles may also be organized into a hierarchy using an appro-
priate data transformation, e.g., a group by transform groups
records with matching values for a specified key field.

Data Transforms. Transforms manipulate data prior to vi-
sualization, and include statistical (e.g., filtering, grouping)
and visual encoding (e.g., cartographic projection, treemap
layout) routines. Transforms produce data sets as output and
may accept multiple parameters (often data fields).

Scales. Scales are functions that map data values to vi-
sual properties such as position, shape, and color. Lyra in-
cludes both ordinal and quantitative (e.g., linear, log, quan-
tile) scales, along with common shape and color palettes.

Guides. Guides visualize scales, providing reference
marks to aid interpretation. Axes visualize scales over a spa-
tial domain, and include ticks, labels, and optional grid lines.
Legends visualize scales for color, shape or size encodings.

Marks. Marks are geometric shapes with named visual
properties. Property values can be set manually or bound to
data. A single mark definition can be bound to only one data
set; Lyra instantiates one mark instance per data record. Akin
to Protovis [BH09, HB10], the available marks in Lyra are:
rectangle, arc, area, line (including closed polygons), plot-
ting symbols, and text labels. All marks share common prop-
erties (e.g., x, y, fill, and stroke) but may also have
unique properties (e.g., angle and radius for arcs).

3.2. The Lyra Interface

The Lyra interface, as shown in Fig. 1, is split into three sec-
tions. The left-hand panel (Fig. 3a) depicts data pipelines:
chains of data transformations applied to a data source. A
pipeline’s inspector provides a paginated data table show-
ing the output of the pipeline, buttons to add new transfor-
mations, and a list of scales defined over data fields. The
right-hand panel (Fig. 3c) contains inspectors for graphical
elements such as marks, axes, and legends. These elements
are grouped into layers to determine coordinate spaces and
z-ordering. These inspectors list all visual properties (posi-
tion, fill color, angle, etc.) along with widgets to manipu-
late them. The central panel contains the visualization can-
vas where graphical elements may be directly manipulated.

3.3. Data Pipelines

Lyra’s left-hand panel contains data pipelines: workflows of
transforms applied to input data. Clicking a pipeline reveals

A
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C

Figure 3: Lyra’s side-panels for data pipelines (left), and
visual properties (right). (a) Data table showing the cur-
rent output of the pipeline; (b) Scale transforms defined over
fields in the pipeline. (c) A property inspector for a symbol
mark type; two properties have been mapped to data fields.

an inspector that lists applicable transforms and presents a
paginated table view of transformed data.

Data Table View. Data pipelines include a data table view,
using a layout inspired by Bret Victor [Vic13]. The first
column in the table view lists field names, enabling verti-
cal scanning. Subsequent columns display individual records
(Fig. 3a). Field names in the first column are interactive:
clicking a field sorts the table by that dimension, drag-and-
drop can be used to bind fields to mark properties. Fields are
colored by their source: green for fields in the original data
and yellow for fields derived by a transform. For example,
formula transforms adds new fields based on mathematical
expressions. When group by transforms are applied, one tab
for each group appears above the table view.

Authoring Transforms. Users can add a transform by
clicking the corresponding icon and configuring its param-
eters. Users may preview the effect of applying a trans-
formation in a popover. Once a transformation is added to
the pipeline, adjusting its properties is reflected in real-time
across the table view and the visualization.

Scales. The inspector also lists all scales defined over data
fields in the pipeline (Fig. 3b). Lyra automatically instanti-
ates scales when a field is associated with a mark property.
The scale domain is defined over the field values; the range
is determined using production rules described below. Users
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can also create scales manually. Users can drag scales onto
mark properties to apply a scale transform, or click a scale
to access an editor dialog (see Fig. 5e). When editing a scale
that is not represented by an axis or legend, a transient guide
is shown in the canvas to convey the effect of scale changes.

Rationale. Our initial prototypes hid raw data values in fa-
vor of exposing only the table schema. However, user eval-
uations indicated this was insufficient. Users noted that it
was difficult to determine the effect of a data transforma-
tion based only on the visualization. The incremental nature
of visualization design can lead to unexpected intermediate
output, for example setting the height of a rectangle mark
can cause all mark instances to overlap if no x or width
property has been set. Later prototypes introduced a full data
table view, to enable inspection of raw values and expose the
current data organization.

Similarly, early prototypes masked the presence of scales:
mapping data to visual properties automatically instantiated
a scale, but they were not explicitly exposed in the inter-
face. When users attempted to construct visualizations, we
found that this significantly restricted their expressiveness.
For example, it is often necessary to specify custom ranges
for scales rather than rely on preset ranges. Such modifica-
tion is difficult to do without surfacing scales as a first-class
construct. Later evaluations found that users additionally had
trouble identifying the purpose of scales, or the effects of
scale modification, if the scales were not explicitly repre-
sented on the visualization by an axis or legend guide. In
response, we introduced transient guides.

3.4. Composing Visual Elements

Visualizations in Lyra are compositions of visual elements:
graphical marks and guides. Elements are grouped together
into layers, which define local coordinates and establish z-
ordering. Lyra’s right-hand panel lists the layers and their
elements (Fig. 3c). Elements are added to a visualization by
creating them within this panel or by dragging a mark from
the mark palette. When an element is selected, an inspec-
tor presents all the element’s associated properties. Property
values may be edited directly or set via drag-and-drop of
data fields with changes reflected on the visualization in real-
time. Hovering over a property displays a guide overlaid on
the visualization to illustrate how that particular property af-
fects the rendered output. Visual elements can also be ma-
nipulated directly on the visualization canvas.

Handles in the canvas area can be used to inter-
actively move, rotate and resize selected elements.
A mark definition will typically render one mark in-
stance per datum in the visualization. To reduce vi-
sual clutter, selecting a mark displays handles only
on the instance that was clicked. However, when a
user adjusts the handles, the change is reflected si-
multaneously across all mark instances.

Connectors. Marks can be positioned relative
to one another using diamond-shaped connec-
tors. Dragging a target mark onto a host mark’s
connector establishes a connection: the target
mark’s position is now determined by the host’s
properties. Changes to the host mark automat-
ically propagate to all connected targets. Con-
nectors are particularly useful for positioning
text labels relative to other marks.

Drop zones. Lyra uses drop zones to asso-
ciate data fields with mark properties. When
dragging a data field, drop zones are overlaid
on the visualization canvas. Each drop zone
comprises a shaded region and a guide line
or point to indicate the corresponding mark
property (e.g., x, width, etc.). Hovering on
a drop zone highlights it and shows the prop-
erty name in a tooltip. Dropping a field then

establishes a mapping between the data field and the mark
property. To avoid clutter, Lyra shows drop zones only for
the currently selected item. When dragging a data field, users
can hover and pause over a mark instance to make it the se-
lected item.

Rationale. Surfacing all properties in the inspector was an
immediate first step to ensure that Lyra maintained Vega’s
expressivity. Users noted that these inspectors were akin
to Tableau’s “shelves,” a familiar interaction paradigm for
many of them. However, there remained a clear opportunity
to further narrow the gulf of execution [HHN85] by push-
ing interactions to the visualization canvas itself. For exam-
ple, we observed users attempting to select, move, or resize
marks currently visualized on the canvas.

As users cited familiarity with drawing tools, we sought
to reuse familiar interaction mechanisms with handles and
connectors. However, there is not a similarly established
interaction mechanism for data-property bindings. We ul-
timately arrived at our drop zones design by prototyping a
number of alternatives. One such alternative incorporated
flow menus [GW00]. When dragging a data field over a mark
on the canvas, a flow menu would appear listing all mappable
visual properties. When dragging the field over a property, a
submenu would appear listing appropriate scale types given
the type of the data field, and the particular property. For ex-
ample, for fields with numeric data, this submenu offered all
quantitative scale types including linear, logarithmic, and so
forth. Dropping the field over a particular scale type estab-
lished a mapping and instantiated the appropriate scale.

In addition to testing designs with users, we analyzed
them using the Cognitive Dimensions of Notation heuris-
tics [GP96]. Data mapping through flow menus, for exam-
ple, provided a visible and consistent interface—regardless
of the mark type, all properties were consistently ordered
within the top-level menu. Although exposing scale types
in the submenu arguably reduced error- proneness (as Lyra
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need not infer a scale type), it increased the diffuseness (or
verbosity) of the interface. User feedback also revealed that
selecting an option from this submenu was a hard mental
operation as it forced them to select a particular scale type
up front. Many users perceived this as a premature commit-
ment. Perhaps most troublesome, given our goal of reducing
the gulf of execution, was the lack of a closeness of mapping:
properties were listed as menu items, one after another.

Drop zones, on the other hand, achieve a high closeness
of mapping as they overlay the canvas in a way that corre-
sponds to the property they represent. For example, a rectan-
gle’s x2 drop zone is shown extending from the left edge of
the canvas to the right-most edge of the rectangle. Dropping
a field over a drop zone performs scale inference (described
below) to reuse an existing scale definition or instantiate a
new one. Although this may increase error-proneness, it de-
creases diffuseness and reduces the hard mental operations
flow menus presented. One limitation of drop zones is a sub-
tle lack of consistency; for example, a tall rectangle mark
will present a larger height drop zone than a shorter one.
We mitigate this issue by showing drop zones only for the
currently selected mark.

3.5. Scale Inference and Production Rules

When a user binds a data field to a mark property, Lyra per-
forms scale inference in an attempt to reuse existing scale
definitions. Lyra searches for an existing scale with the field
as its domain. If a scale is found, it is reused if its range type
is appropriate (e.g., spatial or color values). If no scale is
found or the range type does not match, Lyra instantiates a
new scale: ordinal for categorical data or linear for quanti-
tative data, along with a default range based on the property
type (e.g. width for x properties).

To accelerate common encoding decisions, Lyra also uses
a set of context- and mark-specific production rules to de-
termine intelligent defaults. These production rules may set
additional properties of the mark or add new graphical el-
ements to the canvas. For example, dropping a field over a
rectangle mark’s width drop zone automatically binds the
x property as well to correctly position each rectangle. Drop-
ping a field over a spatial property may add an axis; dropping
a field over a color property may add a legend.

Rationale. Scale inference and production rules were in-
formed primarily by early user feedback. Without these fea-
tures, users had to manually create every aspect of the visual-
ization, which they found to be tedious. Users did not expect
to have to specify a scale definition on every data mapping
operation, and expected axes or legends to be automatically
added as appropriate. We found that the features did alle-
viate this tedium but, interestingly, users subsequently re-
quested a method of circumventing them “if they knew bet-
ter”. As a result, although Lyra performs scale inference on
every data field mapping, production rules are only evalu-
ated if the data field is dropped over a drop zone. Users may

sidestep the rules by working directly with property inspec-
tor instead. We fully enumerate Lyra’s scale inference pro-
cedure and production rules in supplementary material.

4. Evaluation: Example Lyra Visualizations

One of Lyra’s primary goals is to enable an expressive de-
sign space. With Lyra, it should be possible to create vi-
sualizations that would have previously required program-
ming. To assess the extent to which this goal has been
met, we constructed a diverse collection of example visu-
alizations, including those shown in Fig. 4. These exam-
ples compose multiple mark types, and many require multi-
ple data pipelines. For example, Fig. 4(d) uses line, symbol,
and text marks to convey two datasets: train routes and sta-
tions. Fig. 4(h) demonstrates that Lyra’s integration of data
pipelines and graphical manipulation is necessary to main-
tain expressiveness: shading the bars requires a data pipeline
with Group By and Formula data transformations applied.

Similarly, exposing visual layout inspectors allows for
rapid design iteration. In Fig. 4(c), for example, the force-
directed layout inspector exposes parameters such as link
distance, strength and gravity; adjusting them re-renders the
layout in real-time. The layout also augments direct manip-
ulation on the canvas: designers can brush to select nodes
and double-click to pin them. Together, these facilitate a con-
verging process: pinning satisfactory nodes, adjusting layout
properties, and re-running the layout to reposition unpinned
nodes. This process would be cumbersome using only D3’s
force-directed layout [BOH11]: after programming the lay-
out, adjusting parameters requires editing the code and re-
freshing the browser. Pinning nodes then requires inspecting
the properties of each rendered node individually and copy-
ing the x and y positions into the raw dataset.

Figure 5 illustrates how Lyra can be used to compose
Dissecting a Trailer [CCB13], a New York Times visual-
ization that uses over 350 lines of custom JavaScript and
D3 [BOH11] code. Marks are added to the visualization by
dragging them from the palette and dropping them onto the
canvas (Fig. 5a). Their properties can be bound to data by
dragging fields from a pipeline’s data table and dropping
them over corresponding drop zones on the canvas (Fig. 5b).
Using appropriate inspectors, we can add data transforma-
tions (Fig. 5c-d) and specify mark properties (Fig. 5e).

Limitations. The visualizations in Figures 4 and 5 demon-
strate that Lyra enables an expressive design space, but cre-
ating these examples also reveals some limitations. Vega
currently lacks support for polar coordinates. As a result,
Lyra cannot (yet) provide arc mark connectors or produce
radial axes, making it difficult to recreate classic visualiza-
tions such as Nightingale’s Rose or Burtin’s antibiotics chart.
Additionally, Lyra only supports the RGB color space, while
Vega also supports HSL, LAB, and HCL. These color spaces
can facilitate perceptually-sound designs. We plan to address
these limitations in future iterations of Vega and Lyra.
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(a) Bullet chart using rectangle and symbol marks grouped by cate-
gory. Labels are positioned via a left-edge connector on rectangles.

(b) A recreation of Driving Shifts Into Reverse from The New York
Times, originally published May 2, 2010.

(c) Character co-occurrences in Les Misérables. Colors represent
cluster memberships computed by a community-detection algorithm.

(d) The schedule of the San Francisco Bay Area’s CalTrain service
in the style of E. J. Marey’s Paris train schedule.

(e) ZipScribble by Kosara [Kos06]. A geo layout encoder is used
with line marks to connect latitude and longitudes of zip codes.

(f) A streamgraph of unemployed U.S. workers by industry, using a
stack layout with a wiggle [BW08] offset.

(g) Minard’s map of Napoleon’s Russian campaign. A geo transform
encodes spatial positions; army size maps to line stroke width.

(h) Jacques Bertin’s analysis of hotel patterns. Group by and formula
transforms are used to shade bars with values above the mean.

Figure 4: Example visualizations demonstrating Lyra’s expressivity.c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.
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Figure 5: Using Lyra to recreate the New York Times’ Dis-
secting a Trailer. (a) Drag a line mark onto the canvas.
(b) Drag a field from a pipeline’s data table to a drop zone
to map it to a mark property. (c) Add a “group by” data
transform to create a hierarchy. (d) Edit a scale definition to
reverse the range. (e) Use a connector to anchor text marks
to the rectangles.

5. Evaluation: First-Use Study

Lyra was designed to support both expressive and acces-
sible visualization design: users should not require coding
expertise to be able to construct custom visualizations. To
evaluate Lyra’s accessibility, we conducted first-use studies
with 15 representative users including 6 data analysts / vi-
sualization designers, 5 data journalists, and 4 graduate stu-
dents in data visualization. The median self-reported visu-
alization design expertise was 7 on a 10-point scale, while
programming expertise ranged between 2–8 on a 10-point

scale. These users all use visualization as a communicative
medium but their processes for creating them vary. The visu-
alization designers and grad students were more technically
proficient and typically use D3, whereas the data journalists
rely on chart typologies (Microsoft Excel) or grammar-based
systems (Tableau) that do not require programming. Some
journalists also reported eschewing visualization systems in
favor of drawing programs such as Adobe Illustrator.

Methods. We began each study with a 10 minute tutorial.
We then asked participants to design three graphics: a bar
chart of medal count by country at the 2012 Olympics (T1),
a grouped or stacked bar chart of medal counts by medal
type and country (T2), and a trellis plot of barley yields (T3,
Fig. 6). These tasks were designed to ensure participants in-
teracted with all aspects of Lyra. Each task was more dif-
ficult than the previous, intending to first familiarize par-
ticipants with the Lyra design process, and then challenge
them. Participants were encouraged to think-aloud and were
de-briefed at the end. Sessions lasted approximately 45 min-
utes, after which we administered a post-study survey.

Successes. Users quickly learned Lyra’s interaction model
and all users, regardless of their technical expertise, success-
fully completed all three tasks with minimal guidance (100%
task completion rate). Users completed the first two tasks in
just a few minutes, the more complex third task took longer
(T1: median time = 1:33, inter-quartile range (IQR) = 0:51;
T2: median = 2:43, IQR = 2:57; T3: median = 10:24, IQR
= 4:00). In a post- study survey, users rated Lyra’s interface
highly: drop zones felt natural to use (µ = 4.4, σ = 0.57 on a
5-point Likert scale), connectors helped to relatively position
marks (µ = 4.3, σ = 0.49), and a pipeline’s data table helped
evaluate context (µ = 4.4, σ = 0.51). Handles were found use-
ful for resizing and positioning (µ = 3.8, σ = 0.45) but users
noted that the properties they control are typically mapped
to data. When asked to recount their experience, users de-
scribed drop zones as “natural” and “intuitive.” One user
stated, “it’s like literally saying ‘put that there.’” Others drew
comparisons to Tableau’s shelves: “[shelves] don’t always
behave like I expect them to but [drop zones] make me feel

Figure 6: Users were asked to recreate a version of the bar-
ley yields Trellis display by Becker et al. [BCS96]
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Figure 7: A user approximately recreates a D3 visualization (left, requiring 4-6 hours) in Lyra (right, requiring 10 minutes).

more in control.” One participant ended his session by say-
ing that “there’s a real joy in using Lyra.”

Two journalists who participated lead data visualization
teams in their organizations. They appreciated that Lyra took
cues from familiar drawing tools. They welcomed Lyra’s im-
age export options, particularly SVG export, as the visualiza-
tions they produce are often reutilized in print media. One
suggested that Lyra could be a powerful training tool that
could help familiarize his team with the process of design-
ing visualizations from the ground-up.

Shortcomings. We also observed that Lyra posed certain
challenges for our participants. Although users found drop
zones natural and intuitive, they noted problems with the cur-
rent implementation. First, when users missed a drop zone
by a few pixels, they expected Lyra to infer their intent. Sec-
ond, when users successfully dropped a field, they would
lose track of the currently selected mark if it was reposi-
tioned. A third shortcoming was Lyra’s lack of support for
undo, which led users to become more hesitant to freely ex-
plore. Undo support has since been added to Lyra, and we
plan to address the remaining issues in future versions. For
example, increasing the activation area for a drop zone could
help to address the first issue. Staggered animated transitions
could help users better track changes [HR07] to marks.

Finally, several users mentioned that learning from and
repurposing existing visualizations is an important part of
their design process. They found the blank canvas to be an
intimidating starting point. We anticipate that providing a
gallery of examples (including those in this paper) that users
can import, reuse and modify could help mitigate this issue.

6. Conclusion and Future Work

In this paper we contribute Lyra, a direct manipulation envi-
ronment for visualization design. By reducing both tedium
and required technical expertise, Lyra makes custom visu-
alization design more accessible to a broader audience. Di-
rect manipulation techniques such as handles, connectors,
and drop zones reduce the gulf of execution, while Lyra’s

data pipeline and visual canvas help bridge the gulf of evalu-
ation. A diverse collection of examples demonstrates Lyra’s
expressiveness, including many designs that are not express-
ible in current interactive visualization tools. Representative
users are able to create custom visualizations much more
quickly than with current tools, and report that they find
Lyra’s interface “natural” and “intuitive.”

There are a number of directions for future work. For ex-
ample, Lyra uses direct manipulation techniques for com-
posing graphical marks. How can these techniques be ex-
tended to support other tasks? Although Lyra’s primary fo-
cus is as a design tool, data visualization inevitably requires
data cleaning and transformation. Lyra’s data pipelines of-
fer sufficient flexibility to support analytics tasks, but re-
quires familiarity with pipeline operators. What direct ma-
nipulation techniques could be further incorporated to spec-
ify complex data transformations (c.f., [KPHH11])?

An exciting challenge is the design of interactive visu-
alizations without recourse to programming. A straightfor-
ward approach is to include common interactions, similar to
existing toolkits [Fla13, HCL05]. As with chart typologies,
such “interactor typologies” can enable rapid development
of common interactions, but may restrict the design of novel
interaction schemes. A deeper question concerns the design
of combinatorial interaction primitives that complement the
graphical primitives provided by visualization grammars.

Lyra is available as open-source software at http://
idl.cs.washington.edu/projects/lyra/.
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