
Deimos: A Grammar of Dynamic Embodied Immersive
Visualisation Morphs and Transitions

Benjamin Lee Arvind Satyanarayan Maxime Cordeil
Benjamin.Lee@visus.uni-stuttgart.de arvindsatya@mit.edu m.cordeil@uq.edu.au

University of Stuttgart MIT CSAIL University of Queensland
Stuttgart, Germany Cambridge, United States Brisbane, Australia
Monash University
Melbourne, Australia

Arnaud Prouzeau Bernhard Jenny Tim Dwyer
arnaud.prouzeau@inria.fr bernie.jenny@monash.edu tim.dwyer@monash.edu
Inria & LaBRI (University of Monash University Monash University

Bordeaux, CNRS, Bordeaux-INP) Melbourne, Australia Melbourne, Australia
Bordeaux, France

State
3D Barchart

State
Faceted Barchart

Transition
Partitioning

3D barchart partitioning/stacking morph

Transition
Stacking

State
Stacked Barchart

Vis touched surface
at orthogonal angle

Vis touched surface
at parallel angle

Vis not touching surface

3D Barchart
Faceted Barchart

Stacked Barchart

Partitioning

Stacking

1

1

3

3

2

2

Figure 1: A morph that transforms any 3D barchart into either a faceted barchart or a stacked barchart when it touches a
surface in the immersive environment, depending on its angle of intersection. Left: Still images of the animated transition.
Images labelled “1” and “3” correspond to states (keyframes) in the morph, images labelled “2” correspond to the transitions in
the morph. Right: State machine of the morph that corresponds with the still images via colour-coding (yellow for states, green
for transitions). Blue represents signals used to control the behaviour of transitions in the overall morph.

ABSTRACT
We present Deimos, a grammar for specifying dynamic embod-
ied immersive visualisation morphs and transitions. A morph is a
collection of animated transitions that are dynamically applied to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00
https://doi.org/10.1145/3544548.3580754

immersive visualisations at runtime and is conceptually modelled
as a state machine. It is comprised of state, transition, and signal
specifcations. States in a morph are used to generate animation
keyframes, with transitions connecting two states together. A tran-
sition is controlled by signals, which are composable data streams
that can be used to enable embodied interaction techniques. Morphs
allow immersive representations of data to transform and change
shape through user interaction, facilitating the embodied cognition
process. We demonstrate the expressivity of Deimos in an example
gallery and evaluate its usability in an expert user study of six im-
mersive analytics researchers. Participants found the grammar to
be powerful and expressive, and showed interest in drawing upon
Deimos’ concepts and ideas in their own research.

1

https://orcid.org/0000-0002-1171-4741
https://orcid.org/0000-0001-5564-635X
https://orcid.org/0000-0002-9732-4874
https://orcid.org/0000-0003-3800-5870
https://orcid.org/0000-0001-6101-6100
https://orcid.org/0000-0002-9076-9571
https://doi.org/10.1145/3544548.3580754
mailto:permissions@acm.org

CHI ’23, April 23–28, 2023, Hamburg, Germany Lee et al.

CCS CONCEPTS
• Human-centered computing → Visualization theory, con-
cepts and paradigms; Visualization toolkits; Mixed / aug-
mented reality.

KEYWORDS
Immersive Analytics, data visualisation, animated transitions, em-
bodied interaction, user study, grammar

ACM Reference Format:
Benjamin Lee, Arvind Satyanarayan, Maxime Cordeil, Arnaud Prouzeau,
Bernhard Jenny, and Tim Dwyer. 2023. Deimos: A Grammar of Dynamic
Embodied Immersive Visualisation Morphs and Transitions. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (CHI ’23),
April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3544548.3580754

1 INTRODUCTION
Immersive environments, such as virtual and augmented reality
(VR/AR), ofer people a platform for human-computer interaction
that utilises a variety of human senses and a range of physical
human interactions. Compared to traditional desktop interaction,
immersive environments ofer users a more natural and embodied
experience of interaction [14]. Afordances for interaction can be
embedded directly within virtual objects, allowing people to use
their bodies to physically act upon those objects in a manner that
leverages proprioception [46]. In the same way real-world objects
can morph and change shape in response to physical actions, so
should embodied representations of data in Immersive Analytics
[43]. Interaction is crucial in data visualisation to handle complexity
and allow changes to views [47]. When an embodied visualisation
is acted on by a user, it may undergo a transition in its visual state
refecting a change in encoding of data to representation. Animation
is a very common technique to help users naturally keep track of
such visual changes in statistical graphics [25, 50].

Animation that preserves congruency between changes in data
and its visual representation [63] has been demonstrated to confer
benefts in myriad situations. It can aid decision-making in certain
tasks [22], increase viewer engagement in data-driven stories [2, 25],
and promote literacy of unfamiliar and/or complex visualisation
designs [53, 66]. However, these past explorations of animation in
visualisation do not consider deep integration of animation and
user interaction [72]. Since embodied interaction relies on gestural
congruency between the interaction and resulting visual changes,
interaction and animation both clearly go hand in hand for embod-
ied Immersive Analytics applications.

However, compared to the decades of research and development
of desktop-based data visualisation packages for animation (e.g.
[19, 20, 32, 32, 62, 72]) and interaction (e.g. [4, 55, 72]), equivalent
tools for Immersive Analytics lag far behind. While some Immersive
Analytics research has investigated the combination of animation
and interaction [38, 70], no work has yet presented a unifed lan-
guage and grammar for the defnition of such immersive interactive
animations. Moreover, despite the numerous toolkits supporting
the authoring of immersive visualisations (e.g. [9, 11, 49, 58]), none
allow for the rapid design and prototyping of embodied interactions:

a glaring gap in the literature given the prevalence of embodiment
in Immersive Analytics [6].

Therefore in this paper we introduce Deimos: a declarative gram-
mar for authoring dynamic embodied immersive morphs for im-
mersive visualisations. We use the term morph to signify an em-
bodied visualisation’s ability to change shape when actions are
performed on it by a user. In contrast to traditional animated tran-
sitions, morphs are adaptive and can be applied to any data visual-
isation in the environment that matches the partial visualisation
specifcation of one of the morph’s states. Transitions connect these
states through animation that can be controlled by signals: data
streams which stem from embodied user interaction. These are
specifed using the Deimos grammar and are written in JSON. The
adaptivity of morphs allows them to be used in both analysis and
presentation, depending on the degree of specifcity of the morph.

We begin by detailing a set of design goals that allow morphs to
leverage the strengths of immersive environments not present on
desktops (Section 3). We then introduce the Deimos grammar itself,
detailing its components, primitives, and specifcation (Section
4). Next, we describe a prototype implementation of the Deimos
grammar (Section 5), developed in Unity as an extension to the
DXR toolkit by Sicat et al. [58]. To demonstrate the expressivity of
Deimos, we present an example gallery of morphs created in Deimos
which highlights key characteristics of the grammar (Section 6).
We also conducted a user study in which six Immersive Analytics
researchers used Deimos to create their own morphs. Through
semi-structured interviews with these participants, we gauge the
usability of Deimos (Section 7) and elicit discussion topics and
future research directions for morphs (Section 8).

Our contributions include both engineering eforts and theoreti-
cal knowledge, and are summarised as follows:

(1) A grammar for the declaration of dynamic, embodied, inter-
active animated morphs in immersive environments called
Deimos, and an implementation of the grammar in Unity.

(2) An example gallery of interactive morphs, and a user study
and semi-structured interview with six Immersive Analytics
researchers that validates the design, implementation, and
usability of the Deimos grammar.

(3) An open-source toolkit that enables rapid design and pro-
totyping of embodied interactions for Immersive Analytics
which can accelerate future research in this area.

(4) A conceptualisation of how morphs can be defned as keyframe
animations but be later applied as presets & templates during
analysis and/or presentation in VR/AR.

(5) A shift towards animation that is designed around and driven
by (embodied) interaction, as opposed to existing methods
that are mostly driven by the data.

2 RELATED WORK

2.1 Interactive Animated Transitions on 2D
Screens

When a visualisation changes between visual states, animation is
commonly used to help viewers maintain awareness of how data
marks have changed throughout the transition [25, 50], thus min-
imising change blindness [47]. Various grammars and toolkits have
been developed to aid designers in creating animated 2D statistical

2

https://doi.org/10.1145/3544548.3580754

Deimos: A Grammar of Dynamic Embodied Immersive Morphs CHI ’23, April 23–28, 2023, Hamburg, Germany

graphics for use in data-driven storytelling, such as Gemini [33] and
Gemini2 [32], Canis [20] and CAST [19], and DataAnimator [62].
These all fundamentally use keyframe animation, which has been
shown to be the preferred paradigm of animation designers [61].
Earlier work by Tversky et al. [63] however could not fnd strong
evidence of animated graphics being superior to static ones, espe-
cially as animations were often too complex or fast to be accurately
perceived. They instead suggested that interactivity may be one
way to capitalise on the strengths of animation by allowing users to
directly control its playback (start, stop, rewind, etc.). Indeed, later
research found that combining interactivity with animations can
improve outcomes for certain data analysis tasks (e.g. [1, 51]). More
recent work by Zong and Pollock et al. [72] formalised interactive
animation in the form of Animated Vega-Lite, an extension to Vega-
Lite [55] which adds a time encoding channel and event streams
to enable interactive animations for use in data analysis. Such in-
teractive animations (e.g. [1, 51, 52, 72]) oftentimes expose their
animation controls via a time slider and toggleable start/stop button.
A good example of more direct interaction with conventional 2D
animations is that of DimpVis by Kondo and Collins [34]. Through
direct manipulation, users can touch a mark to select it, revealing
a “hint path” that they can drag their fnger along. This causes the
visualisation to temporally navigate forwards or backwards using
animation, with the selected mark following the hint path. The
subsequent work on Glidgets by Kondo et al. [35] followed a similar
premise but for dynamic graphs.

Of course, our work is diferentiated from that of previous works
by its immersive nature. We introduce new concepts and ideas to
accommodate the shift to immersive environments, as we later
detail in Section 3.

2.2 Embodied Interaction and Metaphors for
Immersive Animations

Immersive Analytics is characterised by the use of interactive, en-
gaging, and embodied analysis tools [43]. As such, there is a desire
to move away from WIMP-based controls in favour of more di-
rect, embodied styles of interaction [6, 12]. In embodied interaction
[14], afordances are embedded within the artefact (in our case the
data visualisation) itself, re-framing computational processes and
operations as direct interactions of one’s body with the physical
world [16, 69]. This approach, as Dourish [14] notes, moves the user
interface into the background where it is no longer the centre of
attention. Embodied interaction is capable of leveraging metaphors
[36], which can make it easier to remember interaction techniques
and help users develop their mental model of the target domain [10].
Such metaphors have been extensively used in embodied Immer-
sive Analytics research as a result, typically involving mid-air input.
ImAxes by Cordeil et al. [12] used several interaction metaphors,
such as direct manipulation to compose visualisations based on
the proximity and relative orientation of embodied axes (a similar
metaphor was also employed using the MADE-Axis by Smiley et al.
[59]), and a “throw away” metaphor to delete these visualisations.
FIESTA by Lee et al. [40] used a similar throwing metaphor but for
pinning visualisations onto surfaces in the environment. FiberClay
by Hurter et al. [27] used a “grab” metaphor for translating, rotating,
and scaling a 3D trajectory visualisation.

Embodied interaction has also been used to directly control im-
mersive animated transitions. Tilt Map by Yang et al. [70] is a
visualisation that transforms between three states: a choropleth
map, prism map, and barchart. As the visualisation is tilted using a
VR controller, the visualisation is interpolated between the three
states based on the tilt angle. More interesting is the recent work by
Lee et al. [38] which demonstrated the use of the visualisation’s spa-
tial context as part of the metaphor. They described techniques for
transforming visualisations between 2D and 3D, such as “extruding”
a 2D visualisation into 3D using a “pinch and pull” gesture. For the
technique to be valid however, the 2D visualisation must also be
placed against a physical 2D surface. Through this, the metaphor
is not only of the visualisation being extruded, but also of it being
taken from a surface and “brought out into” space. Both of these
works [38, 70] also demonstrate a high level of gestural congruency
between the interaction and the visualisation that is manipulated,
which is vital in embodied interaction [29, 30]. For example, the
aforementioned extrusion technique described by Lee et al. [38]
causes the visualisation to expand at the same rate as the hand is
being pulled, directly mapping the extent of the extrusion to the
user’s hand position.

While other works do use animations in prototype implementa-
tions (e.g. [11, 18, 24]), animation has largely been used to maintain
awareness during transitions and has not been the focal point of the
research (unlike that of Yang et al. [70] and Lee et al. [38]). There-
fore in this work we further explore the use of embodied interaction
to control visualisation animations in immersive environments.

2.3 Toolkits and Grammars for Immersive
Analytics

In recent years, many toolkits and frameworks have emerged to
support research and development in Immersive Analytics. Some
specialised toolkits have been developed which focus on specifc
application cases. MIRIA [7] allows user experiment data such as
head and hand movements to be replayed in an AR environment
for in-situ analytics. RagRug [17] is a situated analytics toolkit
that updates immersive visualisations in either VR or AR through
the use of a distributed data fow from the Internet of Things and
NODE-Red.

Toolkits have also been developed to facilitate more generic
visualisation authoring in immersive environments. While certainly
not as mature as desktop-based packages such as gg2plot [67] and
D3 [4], they typically provide a strong foundation that can and have
been extended in subsequent works. These toolkits can largely
be distinguished by how visualisations are created by the user.
IATK [11] and u2vis [48] primarily expose their authoring tools
through a GUI—typically through the Inspector window of the
Unity game engine’s editor. In contrast, DXR [58] and VRIA [9]
facilitate visualisation authoring using human-readable JSON fles.
A grammar defnes the syntactical rules of this JSON fle, which is
then interpreted by the system to produce the visualisation. In the
case of both DXR and VRIA, the grammar is based on Vega-Lite’s
grammar [55]. Declarative grammars such as these have proven to
be popular in data visualisation (e.g. [20, 33, 55, 72]) as they separate
how a visualisation is defned from how it is created by the system.

3

CHI ’23, April 23–28, 2023, Hamburg, Germany Lee et al.

These declarative grammars can also make it easier to author data
visualisations, thus leading to more rapid prototyping of ideas.

A common limitation in Immersive Analytics toolkits however
is their support for interactivity. While toolkits like IATK [11]
and DXR [58] provide built-in methods for interacting with the
visualisation such as brushing and range fltering, they do not
expose user-friendly means to create new interactions and instead
require extending the source code itself. In contrast, our work aims
to devise a grammar that can enable interactive animated transitions
in immersive environments. As a result, our work contributes a
grammar that can support both authoring of immersive animated
transitions and help design new (embodied) interaction techniques.

3 DEIMOS DESIGN GOALS
The shift from 2D to 3D is more than just a third spatial encod-
ing. Early in the development of Deimos, we identifed several
key diferences between animated transitions in immersive and
non-immersive environments that give rise to new research chal-
lenges. These challenges were rephrased and synthesised into three
design goals (DG) which infuenced the creation of the Deimos
grammar, allowing us to focus on the novel characteristics of im-
mersive headsets and environments, in turn opening up further
design opportunities. Section 4 will explain the grammar itself and
highlight how it addresses these design goals.

3.1 DG1: Morphs should be adaptable and
fexible

Most animated transition grammars allow for rapid prototyping
between the specifcation and the resulting animation. A low vis-
cosity authoring process is particularly important when creating
interactive animations for data analysis [72], allowing for fast and
easy changes in the specifcation. The ability to rapidly prototype
is facilitated by the constant access of keyboards for text input and
pointing devices (i.e. mice) in desktop environments. In contrast,
a challenge of immersive environments is that they often lack a
convenient and comfortable form of text input that is required to
write textual specifcations, especially in VR or in highly mobile
AR contexts. While a GUI can help facilitate this authoring process
in VR/AR, designing a GUI is premature if there is no underlying
grammar to support it, especially in such a novel environment.

To resolve this confict, we take an approach inspired by Lee et
al.’s recent work [38]. Many animated transition grammars treat
transitions as a bespoke set of changes applied to visualisations
predefned by the animation designer. Instead, we treat animated
transitions as discrete operations that analysts can use to apply
changes to their visualisations during their analysis. For example,
the analyst might apply an animated transition that adds another
spatial encoding to their visualisation, or converts a 3D barchart
into a faceted 2D barchart. This turns animated transitions into a
catalogue of adaptive and fexible operations that can be applied
to immersive visualisations by analysts depending on the situation
and goals. In this way, there exists two types of users of Deimos: im-
mersive analytics system designers who use the grammar to create
a catalogue of animated transitions in a desktop environment (e.g.
Unity editor), and data analysts in VR/AR who use said animated
transitions in their workfows and either do not have access to or

are unfamiliar with the grammar. This necessitates a functional
shift in grammar design, moving from highly tailored transitions
with known data felds and encodings to generic transitions that
operate on baseline idioms. As a result, any given transition specif-
cation can be reused across multiple visualisations, so long as they
meet the baseline criteria specifed by the author (e.g. be a barchart,
have no z encoding).

3.2 DG2: Morphs should support embodied
interaction

Animated transition grammars (e.g. [20, 33, 62]) have paid little
attention to how transitions are triggered and controlled. In cases
where these grammars do (e.g. [72]) it is limited to WIMP-style con-
trols, with practitioners using similar input methods for their nar-
rative visualisations (e.g. play button [52], linear slider/scroll [71]).
In contrast, immersive environments rely on a completely difer-
ent interaction paradigm which goes beyond the desktop and is
both embodied (e.g. [11, 27]) and spatial in nature (e.g. [8, 26]).
Novel language primitives are needed to support embodied interac-
tion as existing ones (i.e. streams in Animated Vega-Lite [72]) do
not adequately express relationships between entities, especially
desktop-based grammars. One such relationship is that of the user
and the visualisation itself: which part of the user is performing
the interaction (e.g. hand, head), and which part of the visualisa-
tion contains the afordance to be interacted with (e.g. mark, axis).
Spatial relationships and interaction also play a signifcant role in
immersive environments [8, 26, 37]—which is not generally the
case in non-immersive environments. For example, an immersive
transition may be controlled based on the position of a handheld
relative to a table [8]. By supporting this, immersive transitions be-
come spatially aware. There can also be a relationship between the
visualisation and its immediate environment, allowing immersive
transitions to become context-aware [13, 60]. An example of this is
the aforementioned “extrusion” techniques by Lee et al. [40] which
require the 2D visualisation to be on a surface to be usable.

By expanding the Deimos grammar to support this paradigm,
we enable a richer design space of visualisation transitions not
otherwise possible on desktop environments, as they allow users
to “reach through” and interact with their data in a more embodied
and engaging manner [14]. It should be noted however that the
actual design of such embodied interactions is left up to the end-
users of Deimos. We decide not to enforce best practices in the
grammar, such as the use of easy to understand metaphors [10, 36]
and proper gestural congruency [29, 30]. Instead, we ensure Deimos
is designed to allow said best practices to be followed—much in
the same way that conventional programming languages do not
enforce best practices.

3.3 DG3: Morphs should still support
conventional approaches

While the two previous design goals are intentionally forward-
thinking, we still want Deimos to be rooted in the same foundational
elements as existing grammars. This is to both ensure that Deimos
follows tried and true concepts and theories, and also to preserve a
sense of familiarity for users of the grammar—especially for those

4

Deimos: A Grammar of Dynamic Embodied Immersive Morphs CHI ’23, April 23–28, 2023, Hamburg, Germany

new to immersive analytics. This includes the use of keyframe ani-
mation as the chief animation paradigm [62], the ability to specify
timing and staging rules to customise the animation, and support-
ing WIMP-based interaction in hybrid immersive analytics setups
or via immersive UX elements (e.g. [44]). Moreover, while DG1
advocates for generalised transitions that can be applied to a wide
range of visualisations, Deimos should still allow for highly cus-
tomised transitions that afect predefned visualisations created by
designers. This is to allow animated transitions in Deimos to still
be useful in controlled situations such as immersive data-driven
storytelling. Therefore, our grammar should support both ends
of two orthogonal spectrums: support both WIMP and embodied
interaction to control and interact with animated transitions; and
support animated transitions that are either highly generalised and
can apply to any visualisation, or highly specifc and apply only to
a particular visualisation in a controlled context.

4 THE DEIMOS GRAMMAR
Deimos is a declarative grammar used to specify transitions be-
tween states (keyframes), as well as the signals (interactions) used
to control them. The grammar is largely based on the design goals
listed in Section 3 and prior work by Lee et al. [38] on visualisation
transformations. The Deimos grammar was developed in conjunc-
tion with its toolkit implementation (Section 5) through an iterative
process. At each iteration, a working version of the grammar was
defned and the toolkit was updated to support it. We created new
example morphs at each iteration to test the new features added
to the grammar, and maintained prior examples to validate any
adjustments to the grammar (similar to unit testing). Many of these
examples can be seen in Section 6. We continued this process until
we felt that the grammar sufciently met our design goals. The
target audience of the grammar are developers and designers of
immersive analytics systems. The morphs they create are then used
by analysts in VR/AR.

A Deimos specifcation can formally be described as a three-tuple
(elements sufxed with “?” are optional):

Morph := (states, signals?, transitions)

These components constitute what we call a Morph, the term sig-
nifying an embodied visualisation’s ability to dynamically change
shape and morph from one state to another via transitions upon
matching certain conditions. A morph can be modelled as a state
machine (Figure 2). A visualisation in the immersive environment
only enters a morph’s state machine when it matches one of its
states. The state node that was matched with determines the pos-
sible transition nodes that it can access. These transition nodes
are where changes are actually made to the visualisation, and are
only entered when specifed criteria are met. These criteria take
the form of signals, which are streams of data typically generated
by user interaction. They can also be used to control the behaviour
of transitions themselves.

Morphs are an extension to any immersive visualisation au-
thoring system already in place. That is, visualisations can still be
manipulated in their usual way, but can have morphs applied to
them should the relevant conditions be met. In this way, morphs
serve purely to augment existing authoring techniques rather than
supplanting them outright. When a visualisation is modifed by the

State 1

State 2

Transition

Baseline morph

Signal criteria met

Transition completed

State matched

State matched

Vis spec manually changed

Vis spec manually changed

Figure 2: Baseline state machine for Deimos morphs showing
a single unidirectional transition. More states and transitions
can be added to the state machine with their own signal
criteria, with support for bidirectional transitions.

user in a manner external to the morph, it exits the morph state ma-
chine. It may then immediately re-enter following the same rules
as before. A visualisation can have multiple morphs (and there-
fore state machines) active simultaneously. Multiple morphs can
also be applied to the same visualisation concurrently, so long as
the properties and encodings they afect do not overlap. The same
morph specifcation can also be active across multiple eligible visu-
alisations. This ability for the state machine to adapt to diferent
visualisation confgurations through a set of rules and conditions
is what helps it satisfy DG1.

Morph specifcations are written and stored as standalone JSON
fles. The use of JSON is very common amongst related grammars
and allows for the separation between grammar and implemen-
tation (i.e. portability). A JSON schema provides auto-completion
and tooltips for writing morph specifcations with supported text
editors. Figure 3 shows a basic example of a morph specifcation,
and how it translates to the immersive environment and the state
machine. The three main components of morphs are annotated with
coloured boxes: states in yellow, signals in blue, and transitions
in green. The same colour coding is used across all other fgures.
The rest of this section will explain in general terms what these
components do.

4.1 States
A morph is comprised of at least two state specifcations. A state
can be defned by the following tuple:

state := (name, restrict?, partial visualisation specifcation)

The name property is a unique case-sensitive string used to refer-
ence this state specifcation in a transition Section 4.3). The restrict
property is a Boolean that if set to true will remove the entry point
associated with the state’s node on the state machine Figure 3 for
an example). This prevents a morph from starting at that state,
making it only accessible via interconnecting transition(s). This is
useful if it is illogical for a morph to start at that state, such as in
unidirectional transitions. Partial visualisation specifcation is an
arbitrary number of properties and components in the state object

5

CHI ’23, April 23–28, 2023, Hamburg, Germany Lee et al.

State
unhighlighted

State
unhighlighted

State
unhighlighted

State
unhighlighted

State
unhighlighted

State
unhighlighted

State
unhighlighted

State
unhighlighted

State
highlighted

Transition
highlighting

1 2

State
unhighlighted

State
highlighted

Transition
highlighting

Highlight Marks on Pinch

State
highlighted

 "name": "Highlight Marks on Pinch",
 "states": [{
 "name": "unhighlighted",
 "mark": "sphere",
 "encoding": {
 "color": null
 }
 }, {
 "name": "highlighted",
 "restrict": true,
 "encoding": {
 "color": { "value": "red" }
 }
 }],
 "signals": [{
 "name": "leftHandPinch",
 "source": "hand",
 "handedness": "left",
 "value": "select"
 }],
 "transitions": [{
 "name": "highlighting",
 "states": ["unhighlighted", "highlighted"],
 "trigger": "leftHandPinch",
 "control": {
 "timing": 0.25,
 "interrupted": "ignore"
 },
 "bidirectional": true
 }]

1

2

leftHandPinch is true

leftHandPinch is false

Figure 3: A basic example of a morph changes the mark
colour of uncoloured visualisations to red whenever the left
hand performs a pinch gesture. Colour-coded boxes denote
the same component in diferent representations. Left: The
morph specifcation. Top right: Still images of this morph
being applied to a 2D scatterplot in an immersive environ-
ment. Bottom right: The state machine for this morph. The
“restrict”: true (shown in the left-hand box labelled with
“2”) prevents the morph from starting at the highlighted state,
and “bidirectional”: true (shown at the end of morph spec-
ifcation) allows the transition to function in both directions.

that all follow the same declarative notation as an actual visuali-
sation. In other words, its syntax is the same as the visualisation
package used in the system. For our implementation of Deimos,
this is the DXR grammar [58] which in turn is based on the Vega-
Lite grammar [55]. In the context of the DXR grammar, a partial
specifcation can consist of any number of view-level properties
(e.g. mark, depth) and/or encoding-level properties declared inside
of an encoding component (e.g. x, color). The partial specifcation
serves two purposes: (i) to determine if a visualisation matches (and
therefore enters) this state; and (ii) to generate the keyframe used
in the transition.

4.1.1 State matching process. Any visualisation properties spec-
ifed as part of the partial visualisation specifcation in a state are
used in the matching process against active visualisations. It is
important to diferentiate between the two types of specifcations
being used in this process: the visualisation specifcation created
by the end-user, and the state specifcation (i.e. the partial visuali-
sation specifcation) that exists as a part of the state component in a
morph. Generally speaking, for a state specifcation to be matched
against a visualisation specifcation, all properties defned in the
former should also be defned in the latter, including their asso-
ciated values. For example, if the state has “color”: {“type”:
“quantitative”}, then the visualisation must also have a color
encoding with the same type for it to match. As a rule of thumb, the
fewer properties defned in the state specifcation, the more likely

a visualisation can match successfully and have morphs applied
to it. The opposite is also true, with more properties in the state
specifcation making it less likely for any visualisation to match suc-
cessfully. This efectively forms a spectrum. Morphs can be highly
generic and can apply to many visualisations, allowing for adaptive
morphs as per DG1. They can also only apply to specifc datasets
and feld names, allowing for highly tailored morphs that are used
in controlled environments as per DG3.

Deimos provides several primitives which afect the matching
process that can be used in place of any JSON value in the state
specifcation. They allow for more nuanced control over which visu-
alisations can and cannot match, and are useful to prevent morphs
from being accidentally applied to incompatible visualisations. Note
that this is not an exhaustive set of primitives. While they were
adequate for the purposes of this work, the grammar can easily be
extended to include more if need be.

• “*” (wildcard): The property should be in the visualisation
but its value can be anything.

• An inequality expression: The property should be in the
visualisation and its value should satisfy the inequality. Only
applicable to numeric properties. e.g. “value”: “>= 100”.

• null: The property should not be included in the visualisa-
tion regardless of its value.

4.1.2 Keyframe creation process. When a visualisation matches a
state and one of its connecting transitions is activated, keyframes
are generated for both initial and fnal states. These keyframes
are used for actual animation during the transition. The initial
keyframe is always the active visualisation’s specifcation prior
to the transition. No changes need to be made to it as it already
matches the properties of the state itself. The fnal keyframe is
created by modifying the initial keyframe using the following set
of rules: (i) visualisation properties that are defned in the initial
state but not in the fnal state are removed; (ii) properties that are
not defned in the initial state but are defned in the fnal state are
added; and (iii) properties defned in both states are set to the fnal
state’s value.

As with the state machine process (Section 4.1.1), Deimos pro-
vides primitives that can be used in place of any JSON value to
refne the keyframe creation process. These primitives functionally
act as placeholders which are later substituted with real values
calculated at runtime, akin to the notion of variables. This allows
for morphs to adapt to a wider range of situations without the need
to hard-code feld names, data types, etc. in morph specifcations.
For the purposes of the state matching process, all of these primi-
tives are treated as wildcards. Their values are resolved after the
keyframes have been created but before the transition is applied.
Once again, this is not an exhaustive list of primitives and can easily
be extended if need be.

• JSON path accessor: The value residing at the JSON path
will be substituted into the property’s value. Is either pre-
fxed with “this.” to access a property from this keyframe, or
“other” to access a property from the other keyframe which
is being transitioned to/from. e.g. “x”: “this.encoding.
y”, “field”: “this.encoding.size.field”.

• A signal name: The value emitted by the specifed signal
(Section 4.2) will be substituted into the property’s value.

6

Deimos: A Grammar of Dynamic Embodied Immersive Morphs CHI ’23, April 23–28, 2023, Hamburg, Germany

• An expression: The evaluated result of the expression will
be substituted into the property’s value. JSON path accessors
and signal names can be used as variables. Only applicable to
numeric properties. e.g. “value”: “other.encoding.size.
value * 10”.

All keyframes are stored throughout the entire lifespan of a
morph. When the morph exits the state machine—the result of the
associated visualisation having its specifcation manually changed
by the user (Figure 2)—all stored keyframes are deleted. Any added
or changed properties will take their values from the state’s keyframe
if one already exists. The main purpose for this is to handle situa-
tions where a property is removed by a transition in one direction,
but needs to be added back in by a transition in the reverse direction.
Without stored keyframes, the removed property would no longer
be known and therefore could not be added back in.

4.2 Signals
In Deimos, a signal is the resulting value from a stream of data
captured from input events, drawing inspiration from Vega’s sig-
nals [56] and event-driven functional reactive programming prin-
ciples [65]. Signals can be used in Deimos to: (i) be substituted as
values in keyframes (Section 4.1.2); (ii) act as conditional triggers
that control when a transition actually begins (Section 4.3); and (iii)
act as a tweening variable to control the progression of a transition
(Section 4.3). No type safety is enforced in Deimos. A morph may
contain zero or more signal specifcations. Deimos has two main
types of signals: signals that stem from some given source, and
signals that evaluate a mathematical expression.

signal := sourceBasedSignal | expressionSignal

4.2.1 Source-based Signals. Source-based signals, as the name sug-
gests, emit values from some input source. This is primarily from
user interactions but could be extended to passively updating values
from sensors, etc. We defne two classes of source-based signals:
deictic and non-deictic signals. Deictic signals express relationships
between a source and target entity. While they mainly serve to
model direct manipulation which is commonly associated with
embodied interaction (DG2), they can also model situations where
there is no actual direct contact. Non-deictic signals capture ev-
erything else, although these are mainly input sources that do not
require some target/context to make sense (e.g. mid-air hand ges-
tures, input source states, sensor data). Their production rules are:

sourceBasedSignal := nonDeicticSignal | deicticSignal
nonDeicticSignal := (name, source, handedness?, value)
deicticSignal := (name, source, handedness?, target, criteria?, value)

Both signal classes share the same three attributes. The name
property references this signal in either a state (Section 4.1.2), an
expression signal (Section 4.2.2), or a transition (Section 4.3). The
source property denotes the type of source that values are to be
retrieved from (e.g. hand, head, vis, ui). Certain sources can also
specify the source’s handedness to distinguish between left, right,
or defaulting to any.

For non-deictic signals, the value property denotes what type
of value to derive from the source, which is then emitted by the
signal. This can either be the state of the user interaction (e.g.

whether the hand is performing a select gesture) or the geometric
properties of the source as an object in the immersive environment
(e.g. position of the user’s head). As previously mentioned, these
are useful when some value of the input source is to be retrieved
without it needing to be in the context of some other target or
object. Figure 3 shows an example of a non-deictic signal: it does
not matter what the hand is touching so long as it is performing
the pinch gesture.

Deictic signals model relationships between entities, and are
based on the interaction section of the design space by Lee et
al. [38]. The target property denotes the type of object that the
source is attempting to target. This can either be a part of the
visualisation (e.g. mark, axis), a separate object in the environment
(e.g. surface), or part of the user themselves (e.g. head). For the
frst two, a criteria property needs to be included to determine
the logic used in selecting the target (e.g. select, touch, nearest).
This logic is needed when there are multiple potential target objects
that could be selected. Lastly, the value property can be used to
derive three types of values. First, it can derive values from the target
much in the same way as non-deictic signals do. For example, a hand
source might target the mark that it is selecting, and the position
of that mark is used as the value. Second, it can derive values
from a comparison between the source and target. For example, a
vis source might target the surface that it is touching, and the
point of intersection between the vis and surface is used as the
value. Third, a boolean value simply emits true if a target has been
selected successfully, and false if no targets are selected.

Deictic signals in particular address the challenges in DG2 as they
express relationships between entities, allowing morphs to react to
direct interactions by the user (e.g. user’s hand selects a mark). Of
course, whether or not these interactions are truly embodied (i.e. it
follows best practices) is dependent on how the morph designer uses
deictic signals in conjunction with the grammar’s other components.
Deictic signals also allow morphs to be spatially-aware [8, 26, 37], as
they can emit values that are based on spatial relationships between
objects which can then be used to control the morph’s behaviour
(e.g. distance between user’s head and the visualisation, orientation
of two standalone tracked objects). Lastly, deictic signals allow
morphs to become context-aware [13, 60], as they can emit values
derived from a visualisation’s relationship with its environment
(e.g. is the visualisation touching a surface, is the visualisation
close to a particular object). This may then act as conditionals to
allow/disallow the morph from triggering (Section 4.3).

While not as critical to this work, the ability to facilitate WIMP-
style interaction using these signals also helps fulfl DG3.

4.2.2 Expression Signals.

expressionSignal := (name, expression)

Expression signals allow for the arbitrary composition of signals
using mathematical expressions. Their primary purpose is to mod-
ify and refne values emitted by source-based signals. We choose to
use expressions as they allow arbitrary calculations to be performed
in a familiar manner, instead of designing a completely new and
potentially confusing domain-specifc language. The name prop-
erty references this signal in the same way as source-based signals.
The expression property is a mathematical expression as a string.

7

CHI ’23, April 23–28, 2023, Hamburg, Germany Lee et al.

Basic mathematical operators can be used alongside select primi-
tive functions (e.g. normalise, distance, angle). As with all other
primitives, the list of supported functions can easily be extended.
Any type of signal can be used as a variable by referencing its name.
As previously mentioned, no type safety is enforced, meaning the
user has to be aware of the data types present in the expression.

Expression signals are similar to deictic signals in that they help
further address the challenges in DG2, but are more powerful in
comparison. For example, while deictic signals only allow for a
single entity to be targeted, expression signals can combine two
(or more) deictic signals together to calculate a new relationship
between the targeted entities (e.g. distance between two marks
selected by the user’s hands).

4.3 Transitions
A morph is comprised of at least one transition specifcation. They
functionally connect two state specifcations together in the state
machine (Figure 2). A transition can be defned by the following
seven-tuple:

transition := (name, states, trigger?, control?, bidirectional?,
disablegrab?, priority?)

The name property serves to identify this transition especially
when multiple transitions are involved. The states property is an
array of two strings, corresponding to the names of the initial
and fnal states in the transition respectively. Referencing states
via their name in this manner helps with encapsulation, keeping
all state related syntax separated from the transitions. The trigger
property is an equality expression that activates the transition when
it evaluates as true, but only when the visualisation matches the
initial state in the states property. The expression follows similar
rules as expression signals (Section 4.2.2) but must return a Boolean
value. Triggers are mainly used to let the user control when the
transition is actually applied, usually as the result of some sort of
input action or condition caused by the user. Not setting a trigger
will cause the transition to be immediately applied when it enters
the initial state. The control component is optionally used to further
customise the behaviour of the transition. It is formally described
by the following fve-tuple:

control := (timing?, easing?, interrupted?, completed?, staging?)
The timing property controls the duration of the transition. If

a number is used, the transition will interpolate between the two
state keyframes over the given duration in seconds. Alternatively,
the name of a signal can be used, in which case the signal will
be used as the tweening variable t. This allows for the duration
and direction of the interpolation to be controlled by the signal
(and subsequently the user). In this situation, the transition will
only begin when the signal is a value between 0 and 1, in addition
to any other conditions. This defaults to 0 if not specifed, which
will result in jump cuts. The easing property applies an easing
function to the transition, defaulting to a linear function if none is
specifed. Easing functions are commonly used in animations and
help make animations look more natural. Functions that slow down
the animation at the start and end can also make it easier to keep
track of visual changes by making movement more predictable [15].
The interrupted property determines what happens when the trigger
returns false whilst the transition is in progress. initial and final

will cause the visualisation to immediately jump to the specifed
state. ignore will instead allow the transition to keep progressing
until it naturally terminates. The ignore condition is particularly
useful in cases where the trigger may inadvertently return false
mid-transition but the transition should still continue, acting as
a sort of fail-safe. This defaults to final. Similarly, the completed
property determines what happens when the visualisation naturally
terminates, either remaining at the final state or resetting back
to the initial state instantaneously. Using the initial condition
may be useful if the transition should not cause any long-term
changes to the visualisation, particularly if the animation is alone
sufcient to serve its purpose [38]. This also defaults to final.

The staging property allows for specifc visualisation properties
to be staged. Name-value pairs can be specifed where the name is
the property to be staged, and the value is an array of two numbers
between 0 and 1 that correspond to start and end percentages. The
property will only be animated when the transition period is within
the given range. Any property not specifed will not be staged.
Staging is a common feature of animated transition grammars [25]
and ours is no diferent. Note that the grammar does not support
staggering.

The bidirectional property of the transition, if set to true (default
false), allows the transition to start and end in the reverse direc-
tion. All transition settings remain the same, except the trigger, if
specifed, needs to return false in order for the reverse transition to
activate. This serves mainly as a convenience function that prevents
the need for two transition specifcations to be written whenever
a single bidirectional transition is desired. However, doing so is
necessary in order to have distinct settings for either direction. The
disablegrab property, if set to true (default false), will automatically
disable the standard VR/AR grab action performed on the visualisa-
tion when the transition starts. This helps prevent visualisations
from being inadvertently moved by the user when a transition’s
trigger uses a similar grab gesture. Lastly, the priority property can
be used to handle edge cases where multiple transitions due to
similar trigger conditions are activating on the same frame, but
they confict with the visualisation properties they modify. In this
situation, the transition with the highest numbered priority will
activate frst, and all other conficting transitions will be blocked. If
priorities are equal, then the order in which they activate is random.
The priority property defaults to 0.

4.4 Satisfaction of Design Goals
We now reiterate how our grammar satisfes the design goals listed
in Section 3.

For DG1, the use of partial visualisation states (Section 4.1.1) and
the keyframe creation process (Section 4.1.2) helps satisfy it. As the
Deimos grammar is defned solely through JSON text, a library of
generic morphs can be created in a development environment that
has access to ergonomic text input (i.e. keyboards). When deployed
in a production environment, the end-user in the immersive envi-
ronment then has access to these (embodied) interactive morphs
without needing to write the specifcations themselves—a process
which is notoriously difcult in VR and/or remote-AR environ-
ments. We provide a direct example of one such generic morph in
Section 6.1. Establishing this JSON-based grammar also sets the

8

Deimos: A Grammar of Dynamic Embodied Immersive Morphs CHI ’23, April 23–28, 2023, Hamburg, Germany

Deimos Morph Specification

DXR Vis SpecificationData
Unity

Deimos

DXR Morphing DXR Vis

Links

DXR vis
updated Start/stop transition

User Inputs

Figure 4: Overview of Deimos and how it interacts with our
updated version of DXR [58]. A recreated version of the orig-
inal DXR overview image is shown in the lower half.

foundation for designing a GUI that is intended for use in VR/AR,
much in the same way that CAST [19] is the GUI implementation of
the Canis grammar [20]. Through this, a morph author can rapidly
prototype entirely in VR/AR.

For DG2, certain components such as deictic (Section 4.2.1) and
expression signals (Section 4.2.2) directly support embodied in-
teraction, as these signals listen to user input and/or changes in
the entities in the environment and thus the relationships between
them. As previously stated in Section 3.2, the grammar intentionally
does not enforce any best practices, including embodied interac-
tion and animated transition principles. However, adherence to
these guidelines is not isolated to any one component of a morph
but instead across the entire specifcation. For example, even if
direct manipulation is emulated through a deictic signal between
the user’s hands and the visualisation’s marks, there would be little
to no gestural congruency if the morph instead changed the visu-
alisation’s geometric size. Therefore, the ability of the grammar
to express embodied interactions is dependent on the morph de-
signer. We describe how a morph can use embodied interaction in a
practical example in Section 6.2. We also describe how morphs can
be rapidly iterated on in order to test new (embodied) interaction
ideas in additional examples in Section 6.3.

For DG3, certain source signals (Section 4.2.1) allow for WIMP UI
elements to be used to control morphs. This of course stands at odds
with the embodied interactions of DG2, but our goal with Deimos
is to support both ends of this theoretical spectrum. Section 6 as
a whole contains multiple examples of these more conventional
types of morphs.

5 DEIMOS IMPLEMENTATION AND TOOLKIT
We created a prototype implementation of the Deimos grammar us-
ing the Unity game engine in order to demonstrate its concepts and
use. Deimos is open source, with its source code and documentation
available on a public GitHub repository1.

5.1 Data Visualisations
As Deimos is primarily an animated transition grammar, we need
data visualisations to apply transitions to. We decided to use DXR

1https://github.com/benjaminchlee/Deimos

Load morph specifications

DXR vis updated

Find matching states

Create observables from signals

Trigger returns true

Create keyframes

Start transition

Transition finished

Stop transition

Dispose observables

DXR Deimos

Figure 5: High-level overview of the Deimos pipeline and
how it interacts with our updated version of DXR [58]. Red
bubbles represent stages that wait for event(s) to fre before
execution continues, also indicated by the preceding hatched
arrow.

by Sicat et al. [58] as the basis of our work. It is a toolkit devel-
oped for the Unity game engine designed for rapid prototyping of
immersive data visualisations. The original DXR implementation
provided support for an assortment of visualisation types, includ-
ing scatterplots, barcharts, radial barcharts, and streamlines. These
visualisations are specifed in JSON fles using an extended version
of the Vega-Lite grammar [55], adding support for the � and depth
encodings. We use DXR instead of other toolkits like IATK [11] as
we found it easier to extend for our purposes. It already supports
the Vega-Lite declarative grammar which is very popular in the
visualisation community. DXR also uses individual GameObjects
for each individual mark, simplifying mesh generation and man-
agement. This came at the cost of rendering performance however,
especially when thousands of marks are displayed on the screen. To
this end, we made performance improvements to how DXR instan-
tiates and updates its marks and axes by introducing object pooling,
especially since marks and axes may be modifed multiple times in
a morph. We also added several new visualisation types: choropleth
and prism maps, stacked and side-by-side barcharts, and faceted
charts (Section 6). However, as the original DXR implementation
does not have support for data transformations like in Vega-Lite,
neither does Deimos. This also means that animated transitions
involving a time dimension (e.g. time varying scatterplots, barchart
races) are not supported in Deimos.

9

https://github.com/benjaminchlee/Deimos

CHI ’23, April 23–28, 2023, Hamburg, Germany Lee et al.

5.2 Code Structure and Pipeline
Figure 4 provides an overview of Deimos’ structure and how it
interacts with our updated version of DXR. Morph specifcations
are contained in JSON fles that are read by Deimos at initialisation.
They can also be refreshed during runtime if the specifcations
are edited. Deimos interacts with DXR in two main ways. Deimos
receives events from DXR whenever a visualisation has been up-
dated, which includes the visualisation specifcation as an argument.
Deimos also sends start and stop function calls to DXR which exe-
cutes the animated transitions.

Figure 5 provides a high-level overview of the Deimos pipeline
in relation to DXR. While it is presented as a linear set of stages, the
pipeline can reset or be exited in certain conditions. First, all morph
specifcations are read and loaded into Deimos. Next, whenever
a DXR visualisation updates, Deimos is notifed via event with
the visualisation’s specifcation. This specifcation is used to check
against all state specifcations in the loaded morphs using the rules
in Section 4.1.1. For any state that has matched, observable streams
are created for each signal that is part of the state’s transitions,
including trigger signals. Observables are created using the UniRx
package [31] and are composed together where necessary. When a
transition’s trigger signal returns true (or if no trigger was specifed
in the frst place), initial and fnal keyframes are created using
the rules in Section 4.1.2. These two keyframes, along with other
transition parameters such as tweening and staging variables, are
sent to the relevant DXR visualisation to start the transition. When
the transition has fnished, Deimos stops the transition on the DXR
visualisation. This step also updates the visualisation specifcation
to refect the new changes made by the transition. Deimos then
disposes of all observables related to the transition. This process
then starts anew again, with Deimos fnding matching states to see
if this newly updated visualisation is eligible for any morphs once
more.

While Deimos is designed such that it exists separately from the
visualisation framework used, they are still intrinsically linked to
each other. Deimos is dependent on the visualisation framework to
implement the actual animation and transition. It is also dependent
on the grammar and syntax of the visualisations themselves. There-
fore, translating Deimos to other visualisation toolkits requires
adaptation to support the new declarative grammar, and the toolkit
itself needs to support animation between keyframes via interpo-
lation. While it is technically possible to create a middleware to
translate visualisation specifcations and thus increase modularity,
we did not explore this option in this work.

5.3 XR Interactions
We use the Mixed Reality Toolkit (MRTK) [45] to enable XR in-
teractions in Deimos. As a result, Deimos can be deployed on a
range of platforms including Windows Mixed Reality, Oculus Quest,
and HoloLens. However, due to the aforementioned performance
limitations when working with large amounts of data, it is recom-
mended to only use Deimos in tethered VR or remote rendering AR
setups. Both controller and articulated hand tracking are supported
in Deimos in the form of source-based signals (Section 4.2.1). While
Deimos does not support eye gaze or voice input, these can be
included in future work.

Life Expectancy vs
Population Scatterplot Choropleth MapGeoscatter

Geographic Scatterplot with Slider

Figure 6: Still images of the Geographic Scaterplot with Slider
morph, using Unity GameObjects as a slider to control the
transition.

6 EXAMPLE GALLERY
We present several examples of morphs created with the Deimos
grammar. We categorise and describe the examples in three ways,
with the frst two aligning with the design goals in Section 3. First,
we highlight how morphs can be designed to adapt to diferent
visualisation confgurations using generic states (DG1), but also
allow for bespoke morphs by using specifc states in controlled con-
texts (DG3). Second, we demonstrate how morphs can be controlled
using both embodied (DG2) and non-embodied (DG3) interaction
methods. And third, we provide two scenarios in which Deimos
can facilitate the prototyping of diferent interaction methods. All
examples and their specifcations are included in the Deimos Github
repository. As such, we do not provide nor go into detail about each
example’s specifcation. The project fles also contain additional
example morphs not described in this paper.

6.1 Generic vs specifc morph examples
In DG1 and DG3, we described a spectrum in which morphs can
vary between generic, adapting itself to a range of visualisation
confgurations, and specifc, allowing it to be used in controlled
settings.

On the generic end, we present the 3D Barchart Partitioning and
Stacking morph (shown in Figure 1). It takes a 3D barchart and
either partitions it into a 2D faceted barchart, or stacks it into a 2D
stacked barchart whenever it touches a surface in the immersive
environment. During the transition, it also aligns the visualisation
to be parallel against the surface that it had touched. This is an
example of a morph involving three states and two transitions in
a branch-like structure. The triggers are set up so that the applied
transition is based on the angle of contact between the barchart
and surface: orthogonal for the faceted barchart, and parallel for
the stacked barchart. Its states are defned such that they only
check that the encodings’ types are correct (i.e. nominal x and/or z,
quantitative y) and that it uses cube marks. Through this, so long
as a visualisation is a 3D barchart then it can undergo this morph,
greatly expanding the range of scenarios it can be used in. JSON
path accessors are also used to substitute in the proper feld names
during runtime (i.e. facetwrap, yofset).

On the other end of the spectrum, the Geographic Scatterplot
with Slider morph (shown in Figure 6) demonstrates the use of two
predefned states: a scatterplot and a choropleth map. Both of these
are explicitly defned using exact encodings and feld names (e.g.
“Population”, “LifeExpectancy”). Because of this, only a visualisation

10

Deimos: A Grammar of Dynamic Embodied Immersive Morphs CHI ’23, April 23–28, 2023, Hamburg, Germany

2D Stacked
Barchart

3D Side-​by-​Side
BarchartUnstacking

Barchart Unstacking Menu-​based Extrusion

Figure 7: Examples of embodied and non-embodied morphs. Left: Still images of the Barchart Unstacking morph, using a
“pinch and pull” gesture to unstack a 2D barchart into 3D. Right: The result of the Menu-based Extrusion morph showing the
radial menu and toggle button.

with these exact encodings and felds can undergo this morph. A
transition connects the two states together, which is controlled
using a linear slider represented by a Unity GameObject. A signal
accesses the x position of this GameObject and uses it as the timing
property of the transition. A morph like this is useful for controlled
settings like data-driven storytelling, as the visualisation(s) are all
predefned by the author.

6.2 Embodied vs non-embodied morph
examples

In DG1 and DG3, we described a spectrum in which morphs vary
based on the use of embodied vs non-embodied (or WIMP-based)
interactions.

On the embodied end, the Barchart Unstacking morph uses a
“pinch and pull” metaphor as the gesture to unstack the bars of a
2D barchart into a side-by-side 3D barchart (shown in Figure 7 left).
To strengthen the metaphor of bars being extruded out into 3D, a
condition is added whereby the 2D barchart needs to be positioned
against a surface for the morph to be allowed—introducing a contex-
tual requirement to the morph. To initiate the transition, the user
also needs to perform a pinch gesture on the visualisation itself,
which is represented by a deictic signal. Other signals calculate the
distance between the user’s hand and the surface the visualisation
is resting against. The transition uses this distance as its timing
property, causing the bars to extrude at the same rate which the
user pulls away from them. In this fashion, the user perceives them-
selves as actually stretching the barchart into 3D, thus resulting in
a high level of gestural congruency [29, 30]. Of course, this is but
one way in which embodied interaction can be achieved, but this
approach can be replicated across other morphs to achieve similar
styles of extrusion efects.

On the non-embodied end, the Menu-based Extrusion morph
adds a third spatial dimension to a 2D scatterplot, but does so via
an MRTK toggle button [45] (shown in Figure 7 right). A signal
retrieves the state of this toggle button, and will trigger the visualisa-
tion when the button is toggled on. This example also demonstrates
the use of a radial menu to select the feld name of the newly added
dimension. A signal retrieves the selected value and substitutes it
into the 3D scatterplot state at keyframe creation. In comparison

to the Barchart Unstacking morph, this example presents a much
simpler and more familiar type of animated transition, albeit in an
immersive environment.

6.3 Prototyping morph interactions
Lastly, we demonstrate how the grammar allows for signals to be
easily swapped and modifed to allow rapid prototyping of diferent
interactions. In terms of the Cognitive Dimensions of Notations
[23], this corresponds to a low level of viscosity.

In this example, we recreate Tilt Map by Yang et al. [70] using
Deimos (shown in Figure 8 top). Three states are defned: choro-
pleth map, prism map, and barchart. Two transitions are defned to
connect these states linearly. A signal is then created to retrieve the
tilt angle of the visualisation relative to the horizontal plane. This
tilt angle is then subdivided into two ranges at specifc angles using
expression signals, that are then used as tweening variables for the
two transitions (choropleth to prism, prism to barchart). With this,
a visualisation will morph between the diferent states depending
on its tilt. However, we can easily change the manner which the
morph is controlled just by replacing the tilt angle with another
source. A straightforward example is to replace it with the height
of the visualisation relative to the foor (shown in Figure 8 bottom).
The two expression signals which subdivide the range will also
need to be updated to the new value ranges. In doing so we turn
Tilt Map into a so-called “Height Map”, just by changing a few lines
in the morph specifcation. The result is shown in Figure 8.

Inspired by work on small multiple layouts in immersive en-
vironments [42], we created the Proxemic-based Facet Curvature
morph (shown in Figure 9 top). It morphs into a faceted chart be-
tween three diferent layouts: fat, curved, and spherical. These
three layouts correspond to three states in the morph, with two
transitions connecting them linearly. A signal retrieves the distance
between the user’s head and the visualisation, with two more sig-
nals subdividing the distance into tweening variables (similar to
the Tilt Map morph). As the user approaches the faceted chart, it
begins to wrap around them into a curved layout, and when they
are close enough it morphs into an egocentric spherical layout. This
efectively makes the chart spatially aware of the user’s position.
To demonstrate another method of controlling this morph, we can

11

CHI ’23, April 23–28, 2023, Hamburg, Germany Lee et al.

Choropleth Map Prism MapChoropleth to Prism

Tilt Map
Prism to Bar Barchart

"signals": [{
 "name": "visUp",
 "source": "vis",
 "value": "up"
 }, {
 "name": "tilt",
 "expression": "angle(vector3(0, 1, 0),
visUp)"
 }, {
 "name": "c2pTween",
 "expression": "normalise(tilt, 20, 45)"
 }, {
 "name": "p2bTween",
 "expression":"normalise(tilt, 75, 90)"
 }],

"signals": [{
 "name": "height",
 "source": "vis",
 "value": "transform.position.y"
 }, {
 "name": "c2pTween",
 "expression": "1 - normalise(height,
0.375, 0.5)"
 }, {
 "name": "p2bTween",
 "expression":"1 - normalise(height,
0.125, 0.25)"
 }],

Choropleth Map Prism Map Barchart

Modified Tilt MapOriginal Signal Specification
Modified Signal Specification

=

Figure 8: Top: Still images of the Tilt Map morph based on Yang et al. [70]. A red and green angle bracket is shown to provide
rotation cues. Bottom: A modifed version of Tilt Map showing changes to the signal specifcation and the resulting morph
shown as still images. This example shows tilt being replaced with height. A red and green bar is shown to provide height cues.

replace the distance signal with the value of a rotary dial (shown
in Figure 9 bottom). As the user rotates the dial the small multiples
curve inwards or outwards. To do so, we create a separate cylinder
GameObject in Unity which functions as this dial. We then replace
the distance signal with a signal which retrieves the rotation value
of the cylinder, and we also update the ranges of the two subdivid-
ing signals. This functionally turns the proxemics-based interaction
into one involving the manipulation of an external object. This
object is currently only virtual, but the concept can be applied to
physical objects using either tangible input or motion tracking.

7 EXPERT EVALUATION
We evaluated Deimos in order to: (i) determine the ease of use and
expressiveness of the grammar; (ii) get impressions on the concepts
introduced in the grammar; and (iii) generate discussion topics and
research directions on the use of animated transitions in immersive
environments.

7.1 Study Design
We use an approach similar to Zong and Pollock et al. [72] by
recruiting three developers of immersive analytics grammars and
toolkits: Peter Butcher of VRIA [9], Philipp Fleck of RagRug [17],
and Ronell Sicat of DXR [58]. To diversify our participant pool,
we also recruited Zeinab Ghaemi of immersive geovisualisation
[21], Tica Lin of embedded sports visualisation [41], and Jorge
Wagner of the VirtualDesk exploration metaphor [64]. We hoped
to learn how Deimos could be positioned within each researcher’s
respective works. To minimise learning requirements, we only
invited researchers who have experience working with Unity.

The user study was conducted remotely in three sections, re-
peated for each participant. First, we conducted a 30-minute intro-
ductory session where we explained the goals of the study, demon-
strated the examples in Section 6, and went through high-level con-
cepts of the grammar. Second, we tasked participants to use Deimos
unsupervised for at least 2.5 hours. They were given walkthroughs
and documentation to learn the grammar, and were encouraged
to create their own morphs with some suggestions given to them.
This documentation can be found in the Deimos Github repository.
Third, we held a one-hour semi-structured interview based on the
aforementioned evaluation goals. We asked participants to show us
their created morphs, whether they found the overall process easy
or difcult, and what parts of the grammar they liked or disliked.
For the three participants with toolkit development experience,
we also asked how they would retroactively implement animated
transitions in their respective toolkits, and if there would be any
signifcant diferences compared to Deimos and why. For the other
three participants without toolkit development experience, we in-
stead asked how Deimos could be used to support any part of their
own research—if at all. However, we allowed the interview to di-
verge and continue organically, drilling down on any interesting
comments participants may have made along the way. Through-
out the study period, we modifed the documentation based on
participant feedback. While we made bug fxes to Deimos where
necessary, we did not add or change any features. Each participant
was ofered a AU$150 gift card as compensation for their time.

The interviews were recorded and transcribed. The frst author
independently performed thematic analysis [5] on all six transcrip-
tions, with two other authors doing the same on three transcriptions
each. These three authors then discussed and synthesised the main

12

Deimos: A Grammar of Dynamic Embodied Immersive Morphs CHI ’23, April 23–28, 2023, Hamburg, Germany

"signals": [{
 "name": "headDist",
 "source": "head",
 "target": "vis",
 "value": "distance"
 }, {
 "name": "f2cTween",
 "expression": "1 - normalise(headDist,
1, 2)"
 }, {
 "name": "c2sTween",
 "expression": "1 - normalise(headDist,
0.25, 0.5)"
 }],

"signals": [{
 "name": "dialRot",
 "source": "RotaryDial",
 "value":
"transform.localEulerAngles.z"
 }, {
 "name": "f2cTween",
 "expression": "normalise(dialRot,
30, 175)"
 }, {
 "name": "c2sTween",
 "expression": "normalise(dialRot,
195, 330)"
 }],

Flat Layout Curved Layout Spherical Layout

=

Flat Layout Curved Layout Spherical Layout

Original Signal Specification Modified Signal Specification

Proxemic-​based Facet Curvature

Modified Proxemic-​based Facet Curvature

Figure 9: Top: Still images of the Proxemic-based Facet Curvature morph, which curves around the user based on the distance
between them and the chart. Bottom: A modifed version which replaces distance with the rotation of a separate dial object.
The changes to the signal specifcation are shown with the resulting morph shown as still images.

themes together, which form the structure of this section and the
following Discussion section.

7.2 Usability feedback
We compile participant feedback based on a selection of the most
relevant Cognitive Dimensions of Notations [23]. Rather than using
the dimensions as heuristics—a common approach in related works
(e.g. [54, 56])—we use them from a usability perspective to evalu-
ate the Deimos grammar. However, we provide self-evaluation for
certain dimensions where relevant.

Error proneness (likelihood of making errors). All partici-
pants spent the required 2.5 hours using the toolkit, however four
of the six spent 7–8 hours using it. The initial reasoning given by
most participants was that they enjoyed their time with Deimos
and learning how it worked. On further inspection however it was
clear that this was in part due to the steep learning curve of the
grammar, with Fleck commenting “I don’t feel that three hours
are enough.” We identifed several potential causes of this, largely
due to grammar’s error proneness. First, many participants (Fleck,
Ghaemi, Lin, and Wagner) were unfamiliar with the DXR grammar,
with even Sicat not having used DXR for three years. As a result,
two grammars needed to be learnt, naturally increasing learning
time. As the Deimos grammar is intrinsically linked to its visu-
alisation grammar (Section 5.1), it is apparent that the choice of
visualisation package brings not only technical but also notational
difculties. Second, our documentation assumed full knowledge
of Unity and its functions which not all participants had. Third,

the error messages provided by the Deimos prototype were not
useful for participants. While the JSON schema validates whether
the morph specifcation is syntactically correct before it is parsed,
no check exists for semantic correctness (e.g. making sure name
properties are unique). This has since been corrected in the pro-
totype. Some participants suggested ways of easing the learning
curve. Sicat suggested video tutorials to better explain the grammar,
whereas Butcher suggested providing the DXR documentation as
pre-reading before the study is even conducted. Interestingly, no
participant suggested changes to the grammar itself beyond simple
name changes (the terms signals and restrict). Whether this is due to
participants not having had enough time to be exposed to Deimos’
advanced features is unclear.

Closeness of mapping (closeness to problem domain). The
lack of grammar changes suggested by participants could be at
least partially explained by its closeness of mapping. All partici-
pants, when asked, had little to no issues understanding how the
grammar models the state machine (Figure 2). The only participant
who raised potential challenges was Fleck, citing the diferences
between declarative and imperative languages. As Unity primarily
uses imperative programming, the shift to a declarative style in
Deimos could confuse certain users, particularly when constructing
an interaction using signals. We do not believe this to be a major
issue however, especially if the immersive visualisations also use a
declarative language (e.g. DXR [58], VRIA [9]).

Viscosity (resistance to change). After following the walk-
throughs, all participants used the same strategy of combining

13

CHI ’23, April 23–28, 2023, Hamburg, Germany Lee et al.

parts of existing examples together to create new morphs to facili-
tate their learning. For example, Wagner combined the states and
transitions of Tilt Map example and the signals of the Proxemic-
based Small Multiple Curvature example to create a rudimentary
“Proxemic Map”. There are only a few examples of participants ex-
tending existing examples with completely new components: Sicat
remapped the proxemic interaction of the Proxemic-based Small
Multiple Curvature example with a virtual rotary dial (the same
as in Section 6.3), and Butcher created a stacked barchart to side-
by-side barchart morph based on whenever the mouse is clicked.
These all demonstrate a low level of viscosity within the grammar,
as participants were generally able to achieve their goals without
issue (minus the aforementioned issues regarding error proneness).
The same concept was also described in Section 6.3. However, poor
error messages introduced viscosity for a few participants. For in-
stance, Lin had tried to create a reduced version of the 3D Barchart
Partitioning example by removing all surface related signals, but the
toolkit did not warn her to remove the references to these signals
in the states, resulting in errors. This need to keep track of changes
in multiple parts of the specifcation contributes to higher viscosity.

Visibility (ability to view components easily). Several par-
ticipants (Fleck, Sicat, and Ghaemi) noted issues relating to the
visibility of signals in the grammar, primarily due to the large num-
ber of possible keywords involved. It was not obvious what options
and/or combinations of signals are available without resorting to
the documentation, although the JSON schema aided this process.
The same participants acknowledged however that this reliance on
documentation is fairly normal for toolkits, especially with only a
few hours of experience. From a technical perspective, the Deimos
prototype improves visibility by exposing the names of any active
morphs and/or transitions on each visualisation, and provides a
toggle to print the emitted values of signals to the console for de-
bugging purposes. Further debug messages can also be enabled
which show the visualisation specifcations of generated keyframes
in JSON format. While these features were not explained in the
documentation, they were highly useful during the development of
Deimos and the creation of our example gallery.

8 DISCUSSION
This section continues from Section 7 by summarising the main
themes and discussion topics of the semi-structured interviews with
our expert participants. We also include several adjacent topics to
round out the discussion of immersive morphs—especially in the
context of other animated transition grammars.

Adaptive morphs. While some participants liked the concept
of adaptive morphs, others found it getting in the way of their
authoring process. Butcher saw value in adaptive morphs, saying
“I could see why that would be useful, especially if you had a large
array of diferent charts... having it modular just makes sense.”
Wagner thought that “the premise works well”, but clarifed that he
would prefer to have “a [morph] specifcation for each type of graph”
instead of one hyper-generic morph that applies to all visualisation
idioms. Ghaemi was caught of-guard by this function when her new
morph was being applied to other visualisations unintentionally
(a result of overly generic states), but was able to reason with
modifying the states to ensure that they are more specifc. Fleck

and Sicat faced a similar issue, but instead suggested the ability
to use an ID to directly target a specifc visualisation, skipping
the state matching process altogether. This was particularly of
relevance to Fleck, where in RagRug [17] “the user does not create
a visualisation [themselves], but the system creates the existing
visualisations.” Overall, participants were able to grasp the concept
of adaptive morphs, but it is apparent that their experiences come
from the perspective of the morph author. A quantitative evaluation
involving data analysis utilising pre-made morphs for practical
tasks would be needed to fully evaluate the concept.

The purpose of morphs. All participants found the examples
exciting and interesting, but some had thoughts on their actual
purpose. Ghaemi said that morphs are mainly useful when they add
or change the data shown, rather than simply remapping encodings
(e.g. Stacked Barchart Extrusion example). Lin similarly said that she
would only use morphs when working with large amounts of data,
such as combining proxemics with Shneiderman’s mantra [57], or
when working with multiple views, but “if it’s only one smaller data
set, and one chart, I probably wouldn’t use it to morph between
diferent columns.” Butcher said that while our example morphs
were “neat and novel”, their animations did not strictly reveal new
information, such as a time-varying scatterplot does. Therefore,
future work should investigate specifc use cases for morphs and
how morphs may potentially vary between them.

Embodied interaction and discoverability. The reception to
the use of embodied interactions in Deimos (DG2) was positive, but
two participants raised discussion topics around their long-term
efects. Many of our example morphs use interaction metaphors
for embodied interaction (e.g. collide with surface, pinch and pull).
Sicat expressed concern over the use of these metaphors, saying
“...maybe in my application, pinning to the wall means or does some-
thing, and then someone else develops a morph where stick to the
wall does something else... that might confuse people... there’s no
universal rule that says, pinning to the wall should do this.” When
asked if Deimos could play a role in shaping these metaphors, Sicat
responded “I would keep it open for now and just let [researchers]
explore”, noting that the feld is still not mature yet. He then sug-
gested the use of tooltips to guide users in discovering morphs,
especially when conficting metaphors are used, but stated this is
of low priority. In a similar vein, Lin suggested two ways of im-
proving embodied morphs and their discoverability, especially as
she had difculties performing the rotation required for the 3D
Barchart Partitioning and Stacking example. The frst was to have
the system predict what action the user is about to do, and display
the morphs associated with that action in a “gestural menu” that
the user can select to trigger the morph. The second was to show
a preview of the morph while performing the interaction. When
asked about the importance of these features, she said that they
“probably [do not] afect the current grammar, because it’s more
like an assistant towards the completion of certain interactions”,
and that they are more like external scripts loaded after the core
grammar. Overall, while there are broader implications of the use
of embodied interaction in immersive analytics, we see the power
in Deimos being used to explore this design space in the long term,
rather than immediately prescribing them in this work.

GUIs and morph templates. Fleck, Sicat, and Ghaemi brought
up ideas on how GUIs can be incorporated into Deimos. Fleck

14

Deimos: A Grammar of Dynamic Embodied Immersive Morphs CHI ’23, April 23–28, 2023, Hamburg, Germany

suggested the use of data fows in Node-RED to author morph spec-
ifcations in JSON, similar to how visualisation specifcations are
created in RagRug [17]. Sicat recalled his own experiences develop-
ing DXR’s GUI [58], noting that a GUI can be useful for non-experts
and even end-users to create their own morphs. In a similar vein,
Ghaemi said that a GUI would have greatly assisted her learning
process with Deimos, citing her lack of experience in both DXR
and toolkits in general. However, both participants clarifed that
the GUI should only cover basic functions, and advanced features
should only be accessed in JSON format. Sicat went on to suggest
that the GUI could expose templates for diferent parts of the gram-
mar that allows users to mix and match and create new morphs,
which would be exposed through dropdowns and menus. He com-
pared this idea to how he used the grammar himself, saying “I went
through your examples, copied the morphs and then pasted it into
my morphs and then just modifed them a bit. So it’s kind of [the]
same idea, right? Just a diferent interface. So for non-experts [it]
would be super easy.” Lin suggested something similar except from
an interaction perspective, especially as in our included examples
“the interaction you perform is very standardised.” In other words,
a set of template interaction techniques could be provided to ac-
celerate the morph authoring process. This feedback opens many
future design possibilities for how a GUI for toolkits like Deimos
might look like, especially if it can allow end-users in VR or AR
to create and/or modify their own morphs to suit their own needs
without needing to write JSON.

Inspiration drawn from the toolkit. All participants drew in-
teresting comparisons between Deimos and their respective works.
Wagner, Ghaemi, and Lin all showed great interest in morphs that
transition between 2D and 3D. For Wagner, from the context of
his work on VirtualDesk [64], said “it would be very interesting
to be able to just snap [3D visualisations] to the desk, and then
they project to 2D, which is something that many experts are very
comfortable with, but then I could show to them that they can
extract [the visualisation] from the desk or from the wall, and try
to grab it and look around...” For Ghaemi whose feld is immersive
geovisualisation [21], it was to have the morph directly tied to
adding layers to a virtual map, “[when the] 3D chart collides with
the map, the bars could be scattered through the buildings, so I can
see the charts on top of the building.” For Lin, she raised ideas in the
context of embedded sports visualisation [41], whereby “you [can]
drag the 2D charts onto a specifc player, or maybe drag it onto the
court, like the fat ground foor, and then it just suddenly morphs
into this heatmap.” In this sense, rather than a visualisation just
morphing between 2D and 3D, it could also morph between being
embedded and non-embedded [68]. We then asked whether they
could see themselves using Deimos to aid in their research. Wagner
thought that as a proof of concept it would work “super well”, but
cited the poor scalability of the toolkit as a reason against using it.
Ghaemi was receptive, hypothesising that “the [toolkit] that you
have it’s, at least, for some of [my ideas], I’m pretty sure that I can
implement what I want.” She also noted that there are no other
immersive analytics toolkits that currently enable animated transi-
tions in the manner she desired. Lin said “there’s a high chance that
I could use this library to help me prototype some scene to show
[sports analysts and coaches].” After this proof of concept stage
however, she would instead develop her own research prototype

from the ground up to support specifc features such as “instant
data updating”. Lastly, Butcher said that “seeing the change in data
and understanding what you know, getting something out of it,
it’s important... certainly not enough attention has been paid to
it in the past I don’t think, especially in the immersive space.” He
followed this up by saying “it’s defnitely something we’re going to
look at in future for sure, the efect is fantastic.” While it is expected
that not every researcher can make use of the Deimos grammar and
the toolkit, our user study clearly demonstrates the signifcance of
this work in generating further research ideas and promoting the
study of animated transitions in immersive analytics.

Animation authoring paradigms. Deimos was originally de-
signed around keyframe animation as its main authoring paradigm.
Interestingly, Deimos can technically be seen as having a combina-
tion of both keyframe and preset & templates paradigms. This is
arguably a good thing, as Thompson et al. [61] recommend author-
ing tools to combine multiple paradigms together to accommodate
diferences in designers’ preferences. In truth, our use of the two
paradigms is actually dependent on who is using the morph. In
Section 3.1 we described two types of users of Deimos: the person
who is creating the morph in a development environment (i.e. the
“morph author”), and the person who is actually using the morph in
an immersive environment (i.e. the “end-user”). The morph author
creates the morph with a keyframe mindset, and the end-user uses
the morphs as though they were presets & templates. Of course,
when used for data exploration the VR/AR analyst does not nec-
essarily need to interpret morphs as presets. Much like Data Clips
[3] allows for data videos to be created using preset clips however,
it is theoretically possible to re-frame Deimos in a similar manner.
Morph authors create preset morphs that apply to generic states.
End-users then combine these preset morphs together to create
linear narratives or non-linear experiences. While this is merely
speculative, we believe that future research can consider and fur-
ther investigate this unique combination of authoring paradigms
for animated transitions.

Data-driven vs interaction-driven animation. Deimos stands
apart from other works in the manner in which animations are ini-
tiated and viewed by end-users once they are defned. Animations
in Animated Vega-Lite [72], Canis [20], Data Animator [62] and so
on are more data-driven. Specifcations are tailored around the in-
tricacies of the loaded dataset, with grammars like Gemini [33] and
Gemini2 [32] even providing recommendation systems to further
improve the animations created. Completed animations are then
passively viewed by the end-user, with little to no input required to
initiate and/or control its playback. In contrast, Deimos is a more
interaction-driven grammar. Morph specifcations consider not only
the change in visual encodings, but also how the user interacts with
the system to trigger the morph itself. Completed morphs are then
actively viewed by the end-user, with them potentially having a
high degree of control over the morph’s playback and function. This
diference is intentional, as immersive environments are inherently
more interactive and embodied [43] than desktop environments,
encouraging users to “reach out” and directly manipulate their data.
We expect and encourage future research on animations in Immer-
sive Analytics to maintain this interaction-driven mindset—even
for presentation and storytelling to better engage and immerse
users through interactivity [28, 39].

15

CHI ’23, April 23–28, 2023, Hamburg, Germany Lee et al.

9 LIMITATIONS
Our work naturally has several limitations in regards to the gram-
mar, the technical implementation, and the user study. First, our
grammar is built upon several key concepts such as dynamic morphs
and embodied interaction. While we aimed to justify these ideas in
Section 3, we did not properly evaluate them with actual end-users
in VR/AR performing data analysis tasks. Therefore, we cannot
confdently say that our approach is quantifably benefcial for im-
mersive analytics. Second, our participants were not exposed to
all of the functionalities of Deimos. It is certainly possible that
there are pain points when using Deimos’ advanced functionalities
which were not identifed due to the limited amount of time partic-
ipants spent using it. This could include the inability to perform
certain embodied gestures with the grammar, or difculties manag-
ing morphs that contain more than 2 or 3 states and/or transitions.
Third, as the grammar is dependent on the visualisation package
that it is built upon, many of its limitations are born from DXR
[58]. Limitations include the inability to transition between difer-
ent mark types, lack of runtime data transformations, and overall
poor scalability compared to other toolkits like IATK [11] especially
when rendering large amounts of data. The inability to transform
data (e.g. aggregation and fltering) is especially troublesome as it
meant that time-varying animations (e.g. Gapminder [52]) were
not considered while designing the grammar, and using certain
visualisations in morphs such as barcharts required pre-processing.
While we had attempted to add data transformations into DXR
ourselves, the challenges in using .NET as a scripting language
made it difcult to achieve a syntax remotely equivalent to that of
Vega-Lite [55]. We see this as obvious future work, especially as
it can allow visualisations to not only morph between encodings,
but also between diferent levels of aggregation, flters, or even
diferent datasets.

10 CONCLUSION
This paper presented Deimos, a grammar and toolkit for proto-
typing morphs in immersive environments. Morphs are a collec-
tion of animated transitions that occur between diferent defned
states, which are triggered and modifed by the use of signals. These
morphs are dynamically applied to visualisations during runtime,
and are capable of leveraging embodied interaction to enable inter-
active animated transitions. We view Deimos as an initial foray into
what a grammar to create embodied animated transitions in immer-
sive environments would look like. While our example gallery and
user study demonstrated Deimos’ ability to create a wide range of
morphs, future work would seek to understand how these morphs
are used by actual data analysts and/or audiences of immersive data
stories in VR/AR. We also hope that this work fuels greater interest
in the use of dynamically morphing embodied visualisations in
Immersive Analytics.

ACKNOWLEDGMENTS
We thank the six Immersive Analytics researchers who took part in
our user study: Peter Butcher, Philipp Fleck, Zeinab Ghaemi, Tica
Lin, Ronell Sicat, and Jorge Wagner. We also wish to thank our
anonymous reviewers for their valuable feedback, and Jiazhou Liu
for his assistance during a pilot study.

REFERENCES
[1] Felwa A. Abukhodair, Bernhard E. Riecke, Halil I. Erhan, and Chris D. Shaw.

2013. Does Interactive Animation Control Improve Exploratory Data Analysis
of Animated Trend Visualization?. In IS&T/SPIE Electronic Imaging, Pak Chung
Wong, David L. Kao, Ming C. Hao, Chaomei Chen, and Christopher G. Healey
(Eds.). Burlingame, California, USA, 86540I. https://doi.org/10.1117/12.2001874

[2] Fereshteh Amini, Nathalie Henry Riche, Bongshin Lee, Jason Leboe-McGowan,
and Pourang Irani. 2018. Hooked on Data Videos: Assessing the Efect of An-
imation and Pictographs on Viewer Engagement. In Proceedings of the 2018
International Conference on Advanced Visual Interfaces. ACM, Castiglione della
Pescaia Grosseto Italy, 1–9. https://doi.org/10.1145/3206505.3206552

[3] Fereshteh Amini, Nathalie Henry Riche, Bongshin Lee, Andres Monroy-
Hernandez, and Pourang Irani. 2017. Authoring Data-Driven Videos with Data-
Clips. IEEE Transactions on Visualization and Computer Graphics 23, 1 (Jan. 2017),
501–510. https://doi.org/10.1109/TVCG.2016.2598647

[4] Michael Bostock, Vadim Ogievetsky, and Jefrey Heer. 2011. D3 Data-Driven
Documents. IEEE Transactions on Visualization and Computer Graphics 17, 12
(Dec. 2011), 2301–2309. https://doi.org/10.1109/TVCG.2011.185

[5] Virginia Braun and Victoria Clarke. 2006. Using Thematic Analysis in Psychology.
Qualitative Research in Psychology 3, 2 (Jan. 2006), 77–101. https://doi.org/10.
1191/1478088706qp063oa

[6] Wolfgang Büschel, Jian Chen, Raimund Dachselt, Steven Drucker, Tim Dwyer,
Carsten Görg, Tobias Isenberg, Andreas Kerren, Chris North, and Wolfgang
Stuerzlinger. 2018. Interaction for Immersive Analytics. In Immersive Analytics,
Kim Marriott, Falk Schreiber, Tim Dwyer, Karsten Klein, Nathalie Henry Riche,
Takayuki Itoh, Wolfgang Stuerzlinger, and Bruce H. Thomas (Eds.). Springer
International Publishing, Cham, 95–138. https://doi.org/10.1007/978-3-030-
01388-2_4

[7] Wolfgang Büschel, Anke Lehmann, and Raimund Dachselt. 2021. MIRIA: A Mixed
Reality Toolkit for the In-Situ Visualization and Analysis of Spatio-Temporal
Interaction Data. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems. ACM, Yokohama Japan, 1–15. https://doi.org/10.1145/
3411764.3445651

[8] Wolfgang Büschel, Patrick Reipschläger, Ricardo Langner, and Raimund Dachselt.
2017. Investigating the Use of Spatial Interaction for 3D Data Visualization
on Mobile Devices. In Proceedings of the 2017 ACM International Conference on
Interactive Surfaces and Spaces. ACM, Brighton United Kingdom, 62–71. https:
//doi.org/10.1145/3132272.3134125

[9] Peter W. S. Butcher, Nigel W. John, and Panagiotis D. Ritsos. 2021. VRIA: A
Web-Based Framework for Creating Immersive Analytics Experiences. IEEE
Transactions on Visualization and Computer Graphics 27, 7 (July 2021), 3213–3225.
https://doi.org/10.1109/TVCG.2020.2965109

[10] John M. Carroll, Robert L. Mack, and Wendy A. Kellogg. 1988. Chapter 3 -
Interface Metaphors and User Interface Design. In Handbook of Human-Computer
Interaction, MARTIN Helander (Ed.). North-Holland, Amsterdam, 67–85. https:
//doi.org/10.1016/B978-0-444-70536-5.50008-7

[11] Maxime Cordeil, Andrew Cunningham, Benjamin Bach, Christophe Hurter,
Bruce H. Thomas, Kim Marriott, and Tim Dwyer. 2019. IATK: An Immersive
Analytics Toolkit. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces
(VR). IEEE, Osaka, Japan, 200–209. https://doi.org/10.1109/VR.2019.8797978

[12] Maxime Cordeil, Andrew Cunningham, Tim Dwyer, Bruce H. Thomas, and
Kim Marriott. 2017. ImAxes: Immersive Axes as Embodied Afordances for
Interactive Multivariate Data Visualisation. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology. ACM, Québec City
QC Canada, 71–83. https://doi.org/10.1145/3126594.3126613

[13] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. 2001. A Conceptual
Framework and a Toolkit for Supporting the Rapid Prototyping of Context-
Aware Applications. Human-Computer Interaction 16, 2 (Dec. 2001), 97–166.
https://doi.org/10.1207/S15327051HCI16234_02

[14] Paul Dourish. 2001. Where the Action Is: The Foundations of Embodied Interaction.
MIT Press, Cambridge, Mass. http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?
bkn=6267252

[15] Pierre Dragicevic, Anastasia Bezerianos, Waqas Javed, Niklas Elmqvist, and
Jean-Daniel Fekete. 2011. Temporal Distortion for Animated Transitions. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’11). Association for Computing Machinery, New York, NY, USA, 2009–2018.
https://doi.org/10.1145/1978942.1979233

[16] Kenneth P. Fishkin, Anuj Gujar, Beverly L. Harrison, Thomas P. Moran, and Roy
Want. 2000. Embodied User Interfaces for Really Direct Manipulation. Commun.
ACM 43, 9 (Sept. 2000), 74–80. https://doi.org/10.1145/348941.348998

[17] Philipp Fleck, Aimee Sousa Calepso, Sebastian Hubenschmid, Michael Sedlmair,
and Dieter Schmalstieg. 2022. RagRug: A Toolkit for Situated Analytics. IEEE
Transactions on Visualization and Computer Graphics (2022), 1–1. https://doi.
org/10.1109/TVCG.2022.3157058

[18] Flow Immersive, Inc. 2022. Data Storytelling with Immersive Visualizations.
https://fowimmersive.com

16

https://doi.org/10.1117/12.2001874
https://doi.org/10.1145/3206505.3206552
https://doi.org/10.1109/TVCG.2016.2598647
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1007/978-3-030-01388-2_4
https://doi.org/10.1007/978-3-030-01388-2_4
https://doi.org/10.1145/3411764.3445651
https://doi.org/10.1145/3411764.3445651
https://doi.org/10.1145/3132272.3134125
https://doi.org/10.1145/3132272.3134125
https://doi.org/10.1109/TVCG.2020.2965109
https://doi.org/10.1016/B978-0-444-70536-5.50008-7
https://doi.org/10.1016/B978-0-444-70536-5.50008-7
https://doi.org/10.1109/VR.2019.8797978
https://doi.org/10.1145/3126594.3126613
https://doi.org/10.1207/S15327051HCI16234_02
http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6267252
http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6267252
https://doi.org/10.1145/1978942.1979233
https://doi.org/10.1145/348941.348998
https://doi.org/10.1109/TVCG.2022.3157058
https://doi.org/10.1109/TVCG.2022.3157058
https://flowimmersive.com

Deimos: A Grammar of Dynamic Embodied Immersive Morphs CHI ’23, April 23–28, 2023, Hamburg, Germany

[19] Tong Ge, Bongshin Lee, and Yunhai Wang. 2021. CAST: Authoring Data-Driven
Chart Animations. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems. ACM, Yokohama Japan, 1–15. https://doi.org/10.1145/
3411764.3445452

[20] T. Ge, Y. Zhao, B. Lee, D. Ren, B. Chen, and Y. Wang. 2020. Canis: A High-Level
Language for Data-Driven Chart Animations. Computer Graphics Forum 39, 3
(June 2020), 607–617. https://doi.org/10.1111/cgf.14005

[21] Zeinab Ghaemi, Ulrich Engelke, Barrett Ens, and Bernhard Jenny. 2022. Proxemic
Maps for Immersive Visualization. Cartography and Geographic Information
Science 49, 3 (May 2022), 205–219. https://doi.org/10.1080/15230406.2021.2013946

[22] Cleotilde Gonzalez. 1996. Does Animation in User Interfaces Improve Decision
Making?. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems Common Ground - CHI ’96. ACM Press, Vancouver, British Columbia,
Canada, 27–34. https://doi.org/10.1145/238386.238396

[23] T. R. G. Green. 1989. Cognitive Dimensions of Notations. In People and Computers
V. University Press, 443–460.

[24] Devamardeep Hayatpur, Haijun Xia, and Daniel Wigdor. 2020. DataHop: Spatial
Data Exploration in Virtual Reality. In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology. ACM, Virtual Event USA,
818–828. https://doi.org/10.1145/3379337.3415878

[25] Jefrey Heer and George Robertson. 2007. Animated Transitions in Statistical
Data Graphics. IEEE Transactions on Visualization and Computer Graphics 13, 6
(Nov. 2007), 1240–1247. https://doi.org/10.1109/TVCG.2007.70539

[26] Sebastian Hubenschmid, Johannes Zagermann, Simon Butscher, and Harald
Reiterer. 2021. STREAM: Exploring the Combination of Spatially-Aware Tablets
with Augmented Reality Head-Mounted Displays for Immersive Analytics. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
ACM, Yokohama Japan, 1–14. https://doi.org/10.1145/3411764.3445298

[27] Christophe Hurter, Nathalie Henry Riche, Steven M. Drucker, Maxime Cordeil,
Richard Alligier, and Romain Vuillemot. 2019. FiberClay: Sculpting Three Di-
mensional Trajectories to Reveal Structural Insights. IEEE Transactions on Visu-
alization and Computer Graphics 25, 1 (Jan. 2019), 704–714. https://doi.org/10.
1109/TVCG.2018.2865191

[28] Petra Isenberg, Bongshin Lee, Huamin Qu, and Maxime Cordeil. 2018. Immersive
Visual Data Stories. In Immersive Analytics. Springer International Publishing,
Cham, 165–184. https://doi.org/10.1007/978-3-030-01388-2_6

[29] Mina C. Johnson-Glenberg. 2018. Immersive VR and Education: Embodied Design
Principles That Include Gesture and Hand Controls. Frontiers in Robotics and AI
5 (2018). https://www.frontiersin.org/articles/10.3389/frobt.2018.00081

[30] Mina C. Johnson-Glenberg and Colleen Megowan-Romanowicz. 2017. Embodied
Science and Mixed Reality: How Gesture and Motion Capture Afect Physics
Education. Cognitive Research: Principles and Implications 2, 1 (May 2017), 24.
https://doi.org/10.1186/s41235-017-0060-9

[31] Yoshifumi Kawai. 2022. UniRx - Reactive Extensions for Unity. https://github.
com/neuecc/UniRx

[32] Younghoon Kim and Jefrey Heer. 2021. Gemini 2 : Generating Keyframe-Oriented
Animated Transitions Between Statistical Graphics. In 2021 IEEE Visualization
Conference (VIS). IEEE, New Orleans, LA, USA, 201–205. https://doi.org/10.1109/
VIS49827.2021.9623291

[33] Younghoon Kim and Jefrey Heer. 2021. Gemini: A Grammar and Recommender
System for Animated Transitions in Statistical Graphics. IEEE Transactions on
Visualization and Computer Graphics 27, 2 (Feb. 2021), 485–494. https://doi.org/
10.1109/TVCG.2020.3030360

[34] Brittany Kondo and Christopher Collins. 2014. DimpVis: Exploring Time-
varying Information Visualizations by Direct Manipulation. IEEE Transac-
tions on Visualization and Computer Graphics 20, 12 (Dec. 2014), 2003–2012.
https://doi.org/10.1109/TVCG.2014.2346250

[35] Brittany Kondo, Hrim Mehta, and Christopher Collins. 2014. Glidgets: Interac-
tive Glyphs for Exploring Dynamic Graphs. Proc. of IEEE Conf. on Information
Visualization (InfoVis) (2014).

[36] George Lakof and Mark Johnson. 2008. Metaphors We Live By. University of
Chicago Press.

[37] Ricardo Langner, Marc Satkowski, Wolfgang Büschel, and Raimund Dachselt.
2021. MARVIS: Combining Mobile Devices and Augmented Reality for Visual
Data Analysis. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems. ACM, Yokohama Japan, 1–17. https://doi.org/10.1145/
3411764.3445593

[38] Benjamin Lee, Maxime Cordeil, Arnaud Prouzeau, Bernhard Jenny, and Tim
Dwyer. 2022. A Design Space For Data Visualisation Transformations Between
2D And 3D In Mixed-Reality Environments. In CHI Conference on Human Factors
in Computing Systems. ACM, New Orleans LA USA, 1–14. https://doi.org/10.
1145/3491102.3501859

[39] Bongshin Lee, Tim Dwyer, Dominikus Baur, and Xaquín González Veira. 2018.
Watches to Augmented Reality: Devices and Gadgets for Data-Driven Storytelling.
In Data-Driven Storytelling. AK Peters/CRC Press, 153–168.

[40] Benjamin Lee, Xiaoyun Hu, Maxime Cordeil, Arnaud Prouzeau, Bernhard Jenny,
and Tim Dwyer. 2021. Shared Surfaces and Spaces: Collaborative Data Vi-
sualisation in a Co-located Immersive Environment. IEEE Transactions on

Visualization and Computer Graphics 27, 2 (Feb. 2021), 1171–1181. https:
//doi.org/10.1109/TVCG.2020.3030450

[41] Tica Lin, Zhutian Chen, Yalong Yang, Daniele Chiappalupi, Johanna Beyer, and
Hanspeter Pfster. 2022. The Quest for Omnioculars: Embedded Visualization
for Augmenting Basketball Game Viewing Experiences. IEEE Transactions on
Visualization and Computer Graphics (2022), 1–10. https://doi.org/10.1109/TVCG.
2022.3209353

[42] Jiazhou Liu, Arnaud Prouzeau, Barrett Ens, and Tim Dwyer. 2020. Design and
Evaluation of Interactive Small Multiples Data Visualisation in Immersive Spaces.
In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE,
Atlanta, GA, USA, 588–597. https://doi.org/10.1109/VR46266.2020.00081

[43] K. Marriott, F. Schreiber, T. Dwyer, K. Klein, N. Henry Riche, T. Itoh, W. Stuer-
zlinger, and B. H. Thomas. 2018. Immersive Analytics. Springer International
Publishing. https://books.google.com.au/books?id=vaVyDwAAQBAJ

[44] Microsoft. 2021. Mixed Reality UX Elements - Mixed Reality.
https://learn.microsoft.com/en-us/windows/mixed-reality/design/app-
patterns-landingpage

[45] Microsoft. 2022. MixedRealityToolkit-Unity. https://github.com/microsoft/
MixedRealityToolkit-Unity

[46] Mark R. Mine, Frederick P. Brooks, and Carlo H. Sequin. 1997. Moving Objects
in Space: Exploiting Proprioception in Virtual-Environment Interaction. In Pro-
ceedings of the 24th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’97). ACM Press/Addison-Wesley Publishing Co., USA,
19–26. https://doi.org/10.1145/258734.258747

[47] Tamara Munzner. 2014. Visualization Analysis and Design. CRC Press, Taylor
& Francis Group, CRC Press is an imprint of the Taylor & Francis Group, an
informa business, Boca Raton.

[48] Patrick Reipschläger and Raimund Dachselt. 2019. DesignAR: Immersive 3D-
Modeling Combining Augmented Reality with Interactive Displays. In Proceedings
of the 2019 ACM International Conference on Interactive Surfaces and Spaces. ACM,
Daejeon Republic of Korea, 29–41. https://doi.org/10.1145/3343055.3359718

[49] Patrick Reipschlager, Tamara Flemisch, and Raimund Dachselt. 2021. Personal
Augmented Reality for Information Visualization on Large Interactive Displays.
IEEE Transactions on Visualization and Computer Graphics 27, 2 (Feb. 2021), 1182–
1192. https://doi.org/10.1109/TVCG.2020.3030460

[50] George Robertson, Kim Cameron, Mary Czerwinski, and Daniel Robbins. 2002.
Animated Visualization of Multiple Intersecting Hierarchies. Information Visual-
ization 1, 1 (March 2002), 50–65. https://doi.org/10.1057/palgrave.ivs.9500002

[51] G. Robertson, R. Fernandez, D. Fisher, B. Lee, and J. Stasko. 2008. Efectiveness
of Animation in Trend Visualization. IEEE Transactions on Visualization and
Computer Graphics 14, 6 (Nov. 2008), 1325–1332. https://doi.org/10.1109/TVCG.
2008.125

[52] Hans Rosling. 2007. The Best Stats You’ve Ever Seen | Hans Rosling. https:
//www.youtube.com/watch?v=hVimVzgtD6w

[53] Puripant Ruchikachorn and Klaus Mueller. 2015. Learning Visualizations by
Analogy: Promoting Visual Literacy through Visualization Morphing. IEEE
Transactions on Visualization and Computer Graphics 21, 9 (Sept. 2015), 1028–
1044. https://doi.org/10.1109/TVCG.2015.2413786

[54] Arvind Satyanarayan, Bongshin Lee, Donghao Ren, Jefrey Heer, John Stasko,
John Thompson, Matthew Brehmer, and Zhicheng Liu. 2019. Critical Refections
on Visualization Authoring Systems. IEEE Transactions on Visualization and
Computer Graphics (2019), 1–1. https://doi.org/10.1109/TVCG.2019.2934281

[55] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jefrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (Jan. 2017), 341–350. https://doi.org/
10.1109/TVCG.2016.2599030

[56] Arvind Satyanarayan, Kanit Wongsuphasawat, and Jefrey Heer. 2014. Declarative
Interaction Design for Data Visualization. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology. ACM, Honolulu Hawaii
USA, 669–678. https://doi.org/10.1145/2642918.2647360

[57] B. Shneiderman. 1996. The Eyes Have It: A Task by Data Type Taxonomy
for Information Visualizations. In Proceedings 1996 IEEE Symposium on Visual
Languages. IEEE Comput. Soc. Press, Boulder, CO, USA, 336–343. https://doi.
org/10.1109/VL.1996.545307

[58] Ronell Sicat, Jiabao Li, Junyoung Choi, Maxime Cordeil, Won-Ki Jeong, Benjamin
Bach, and Hanspeter Pfster. 2019. DXR: A Toolkit for Building Immersive Data
Visualizations. IEEE Transactions on Visualization and Computer Graphics 25, 1
(Jan. 2019), 715–725. https://doi.org/10.1109/TVCG.2018.2865152

[59] Jim Smiley, Benjamin Lee, Siddhant Tandon, Maxime Cordeil, Lonni Besançon,
Jarrod Knibbe, Bernhard Jenny, and Tim Dwyer. 2021. The MADE-Axis: A
Modular Actuated Device to Embody the Axis of a Data Dimension. Proceedings
of the ACM on Human-Computer Interaction 5, ISS (Nov. 2021), 1–23. https:
//doi.org/10.1145/3488546

[60] Dag Svanæs. 2001. Context-Aware Technology: A Phenomenological Perspective.
Human–Computer Interaction 16, 2-4 (Dec. 2001), 379–400. https://doi.org/10.
1207/S15327051HCI16234_17

[61] J. Thompson, Z. Liu, W. Li, and J. Stasko. 2020. Understanding the Design Space
and Authoring Paradigms for Animated Data Graphics. Computer Graphics Forum

17

https://doi.org/10.1145/3411764.3445452
https://doi.org/10.1145/3411764.3445452
https://doi.org/10.1111/cgf.14005
https://doi.org/10.1080/15230406.2021.2013946
https://doi.org/10.1145/238386.238396
https://doi.org/10.1145/3379337.3415878
https://doi.org/10.1109/TVCG.2007.70539
https://doi.org/10.1145/3411764.3445298
https://doi.org/10.1109/TVCG.2018.2865191
https://doi.org/10.1109/TVCG.2018.2865191
https://doi.org/10.1007/978-3-030-01388-2_6
https://www.frontiersin.org/articles/10.3389/frobt.2018.00081
https://doi.org/10.1186/s41235-017-0060-9
https://github.com/neuecc/UniRx
https://github.com/neuecc/UniRx
https://doi.org/10.1109/VIS49827.2021.9623291
https://doi.org/10.1109/VIS49827.2021.9623291
https://doi.org/10.1109/TVCG.2020.3030360
https://doi.org/10.1109/TVCG.2020.3030360
https://doi.org/10.1109/TVCG.2014.2346250
https://doi.org/10.1145/3411764.3445593
https://doi.org/10.1145/3411764.3445593
https://doi.org/10.1145/3491102.3501859
https://doi.org/10.1145/3491102.3501859
https://doi.org/10.1109/TVCG.2020.3030450
https://doi.org/10.1109/TVCG.2020.3030450
https://doi.org/10.1109/TVCG.2022.3209353
https://doi.org/10.1109/TVCG.2022.3209353
https://doi.org/10.1109/VR46266.2020.00081
https://books.google.com.au/books?id=vaVyDwAAQBAJ
https://learn.microsoft.com/en-us/windows/mixed-reality/design/app-patterns-landingpage
https://learn.microsoft.com/en-us/windows/mixed-reality/design/app-patterns-landingpage
https://github.com/microsoft/MixedRealityToolkit-Unity
https://github.com/microsoft/MixedRealityToolkit-Unity
https://doi.org/10.1145/258734.258747
https://doi.org/10.1145/3343055.3359718
https://doi.org/10.1109/TVCG.2020.3030460
https://doi.org/10.1057/palgrave.ivs.9500002
https://doi.org/10.1109/TVCG.2008.125
https://doi.org/10.1109/TVCG.2008.125
https://www.youtube.com/watch?v=hVimVzgtD6w
https://www.youtube.com/watch?v=hVimVzgtD6w
https://doi.org/10.1109/TVCG.2015.2413786
https://doi.org/10.1109/TVCG.2019.2934281
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/TVCG.2018.2865152
https://doi.org/10.1145/3488546
https://doi.org/10.1145/3488546
https://doi.org/10.1207/S15327051HCI16234_17
https://doi.org/10.1207/S15327051HCI16234_17

CHI ’23, April 23–28, 2023, Hamburg, Germany

39, 3 (June 2020), 207–218. https://doi.org/10.1111/cgf.13974
[62] John R Thompson, Zhicheng Liu, and John Stasko. 2021. Data Animator: Au-

thoring Expressive Animated Data Graphics. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems. ACM, Yokohama Japan,
1–18. https://doi.org/10.1145/3411764.3445747

[63] Barbara Tversky, Julie Bauer Morrison, and Mireille Betrancourt. 2002. Animation:
Can It Facilitate? International Journal of Human-Computer Studies 57, 4 (Oct.
2002), 247–262. https://doi.org/10.1006/ijhc.2002.1017

[64] J. A. Wagner Filho, C.M.D.S. Freitas, and L. Nedel. 2018. VirtualDesk: A Com-
fortable and Efcient Immersive Information Visualization Approach. Computer
Graphics Forum 37, 3 (June 2018), 415–426. https://doi.org/10.1111/cgf.13430

[65] Zhanyong Wan, Walid Taha, and Paul Hudak. 2002. Event-Driven FRP. In
Practical Aspects of Declarative Languages, Gerhard Goos, Juris Hartmanis, Jan
van Leeuwen, Shriram Krishnamurthi, and C. R. Ramakrishnan (Eds.). Vol. 2257.
Springer Berlin Heidelberg, Berlin, Heidelberg, 155–172. https://doi.org/10.1007/
3-540-45587-6_11

[66] Qianwen Wang, Zhen Li, Siwei Fu, Weiwei Cui, and Huamin Qu. 2019. Narvis:
Authoring Narrative Slideshows for Introducing Data Visualization Designs. IEEE
Transactions on Visualization and Computer Graphics 25, 1 (Jan. 2019), 779–788.
https://doi.org/10.1109/TVCG.2018.2865232

[67] Hadley Wickham. 2010. A Layered Grammar of Graphics. Journal of Computa-
tional and Graphical Statistics 19, 1 (Jan. 2010), 3–28. https://doi.org/10.1198/

Lee et al.

jcgs.2009.07098
[68] Wesley Willett, Yvonne Jansen, and Pierre Dragicevic. 2017. Embedded Data

Representations. IEEE Transactions on Visualization and Computer Graphics 23, 1
(Jan. 2017), 461–470. https://doi.org/10.1109/TVCG.2016.2598608

[69] Amanda Williams, Eric Kabisch, and Paul Dourish. 2005. From Interaction to
Participation: Confguring Space Through Embodied Interaction. In UbiComp
2005: Ubiquitous Computing (Lecture Notes in Computer Science), Michael Beigl,
Stephen Intille, Jun Rekimoto, and Hideyuki Tokuda (Eds.). Springer, Berlin,
Heidelberg, 287–304. https://doi.org/10.1007/11551201_17

[70] Yalong Yang, Tim Dwyer, Kim Marriott, Bernhard Jenny, and Sarah Goodwin.
2020. Tilt Map: Interactive Transitions Between Choropleth Map, Prism Map
and Bar Chart in Immersive Environments. IEEE Transactions on Visualization
and Computer Graphics 27, 12 (2020), 4507–4519. https://doi.org/10.1109/TVCG.
2020.3004137

[71] Stephanie Yee and Tony Chu. 2015. A Visual Introduction to Machine Learning.
http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

[72] Jonathan Zong, Dylan Wootton, Arvind Satyanarayan, and Josh Pollock. 2022.
Animated Vega-Lite: Unifying Animation with a Grammar of Interactive Graphics.
IEEE Transactions on Visualization and Computer Graphics (2022), 1–11. https:
//doi.org/10.1109/TVCG.2022.3209369

18

https://doi.org/10.1111/cgf.13974
https://doi.org/10.1145/3411764.3445747
https://doi.org/10.1006/ijhc.2002.1017
https://doi.org/10.1111/cgf.13430
https://doi.org/10.1007/3-540-45587-6_11
https://doi.org/10.1007/3-540-45587-6_11
https://doi.org/10.1109/TVCG.2018.2865232
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1109/TVCG.2016.2598608
https://doi.org/10.1007/11551201_17
https://doi.org/10.1109/TVCG.2020.3004137
https://doi.org/10.1109/TVCG.2020.3004137
http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
https://doi.org/10.1109/TVCG.2022.3209369
https://doi.org/10.1109/TVCG.2022.3209369

	Abstract
	1 Introduction
	2 Related Work
	2.1 Interactive Animated Transitions on 2D Screens
	2.2 Embodied Interaction and Metaphors for Immersive Animations
	2.3 Toolkits and Grammars for Immersive Analytics

	3 Deimos Design Goals
	3.1 DG1: Morphs should be adaptable and flexible
	3.2 DG2: Morphs should support embodied interaction
	3.3 DG3: Morphs should still support conventional approaches

	4 The Deimos Grammar
	4.1 States
	4.2 Signals
	4.3 Transitions
	4.4 Satisfaction of Design Goals

	5 Deimos Implementation and Toolkit
	5.1 Data Visualisations
	5.2 Code Structure and Pipeline
	5.3 XR Interactions

	6 Example Gallery
	6.1 Generic vs specific morph examples
	6.2 Embodied vs non-embodied morph examples
	6.3 Prototyping morph interactions

	7 Expert Evaluation
	7.1 Study Design
	7.2 Usability feedback

	8 Discussion
	9 Limitations
	10 Conclusion
	Acknowledgments
	References

