
Something In Between Formal Spec and Informal Representation
Ryan Yen
MIT CSAIL

ryanyen2@mit.edu

Josh Pollock
MIT CSAIL

jopo@mit.edu

Caroline Berger
Aarhus University

caroline.berger@cs.au.dk

Arvind Satyanarayan
MIT CSAIL

arvindsatya@mit.edu

Figure 1: A scenario illustrating a semi-formal paradigm, where programmers code with web page, image, and 𝑙𝑎𝑡𝑒𝑥 formula.

Programming is not merely the act of writing rigid code syntax. In
practice, programmers often engage with a range of informal rep-
resentations, like sketching architectures on whiteboards, drawing
flowcharts to plan logic, or collecting visual examples from the web.
These artifacts are not just peripheral aids; they are central to how
programmers think, communicate, and iterate. Programmers con-
stantly move between these informal representations and formal
code, using each to inform and refine the other [1].

However, existing programming environments often attempt to
incorporate these informal artifacts by strictly formalizing them
into executable code too early or by superficially overlaying formal
specifications onto informal content. Systems like Sketch-n-Sketch
employ program synthesis to translate user manipulations directly
into formal code [2], whereas tools such as Inkbase overlay prede-
fined attributes onto informal sketches incrementally [3]. While
these methods effectively bridge informal and formal representa-
tions within certain domains, they suffer from limited generalizabil-
ity. Premature formalization frequently imposes rigid structures
that restrict adaptability, impeding scalability and flexibility [5].

In response, we propose an alternative approach, semi-formal
paradigm, which operates dynamically between formal and infor-
mal spaces. This paradigm leverages foundation model to reason
about evolving user intentions, dynamically extracting attributes
from informal representations and incrementally structuring them
based on context. Central principles include gradually enriching
informal artifacts into structured data, relaxing strict type con-
straints to accommodate fuzzy types [4], and enabling just-in-time
resolution of ambiguities through context-sensitive AI reasoning.

Consider a concrete scenario of brand analysis (see Figure 1). Ini-
tially, the user simply pastes a web URL and references it informally
as @link.product_data , allowing AI-driven scraping to dynami-
cally extract structured details from the web page, such as product
prices, clarifying ambiguities as needed. Next, the user informally

, ,
.

extracts aesthetic attributes, like color palettes from an uploaded
image. They used references such as @image.color_palette[-1] ,
integrating the extracted color value into their own visualizations.
Finally, informal 𝐿𝑎𝑇𝑒𝑋 annotations, such as the Aesthetic-Price
Score (APS) formula defined in a document, transformed into exe-
cutable computations such as APS() , enabling users to reuse and
parameterize the function.

Substantial research remains necessary to fully realize this semi-
formal paradigm. Exploring how users navigate between formal
and informal representations, developing efficient mechanisms for
dynamic attribute extraction, and refining AI-driven context rea-
soning remain open challenges. Our ongoing work aims to address
these areas, ultimately creating programming tools that support
human dynamic cognition: fluid, iterative, and continuously evolv-
ing. This vision aligns closely with the broader goals of the CHI’25
Tools for Thought workshop. By fostering systems that dynamically
bridge informal thought and formal code syntax, our semi-formal
paradigm directly engages core questions around protecting and
augmenting critical thinking and enabling new sensemaking strate-
gies towards program.

For more details and video demos, please refer to this link.

REFERENCES
[1] Mauro Cherubini, Gina Venolia, Rob DeLine, and Andrew J. Ko. 2007. Let’s go to

the whiteboard: how and why software developers use drawings. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. 557–566. https:
//doi.org/10.1145/1240624.1240714

[2] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-
directed programming for SVG. In Proceedings of the 32nd Annual ACM Symposium
on User Interface Software and Technology. 281–292. https://doi.org/10.1145/
3332165.3347925

[3] James Lindenbaum, Szymon Kaliski, and Joshua Horowitz. 2022. Inkbase: Pro-
grammable Ink. https://www.inkandswitch.com/inkbase

[4] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A. Ham-
mer. 2017. Hazelnut: a bidirectionally typed structure editor calculus. ACM
SIGPLAN Notices 52, 1 (2017), 86–99. https://doi.org/10.1145/3009837.3009900

[5] Frank M. Shipman and Catherine C. Marshall. 1999. Formality considered harmful:
Experiences, emerging themes, and directions on the use of formal representations
in interactive systems. Computer Supported Cooperative Work (CSCW) 8 (1999),
333–352. https://doi.org/10.1023/A:1008716330212

https://orcid.org/0000-0001-8212-4100
https://orcid.org/0000-0001-5141-0999
https://orcid.org/0000-0001-6636-8658
https://orcid.org/0000-0001-5564-635X
https://ryanyen2.github.io/publications/semi-formal-programming/
https://doi.org/10.1145/1240624.1240714
https://doi.org/10.1145/1240624.1240714
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3332165.3347925
https://www.inkandswitch.com/inkbase
https://doi.org/10.1145/3009837.3009900
https://doi.org/10.1023/A:1008716330212

	References

