

Animated Vega-Lite: Unifying Animation with a
Grammar of Interactive Graphics

Jonathan Zong*, Josh Pollock*, Dylan Wootton, Arvind Satyanarayan

Abstract— We present Animated Vega-Lite, a set of extensions to Vega-Lite that model animated visualizations as time-varying data
queries. In contrast to alternate approaches for specifying animated visualizations, which prize a highly expressive design space,
Animated Vega-Lite prioritizes unifying animation with the language’s existing abstractions for static and interactive visualizations to
enable authors to smoothly move between or combine these modalities. Thus, to compose animation with static visualizations, we
represent time as an encoding channel. Time encodings map a data feld to animation keyframes, providing a lightweight specifcation
for animations without interaction. To compose animation and interaction, we also represent time as an event stream; Vega-Lite
selections, which provide dynamic data queries, are now driven not only by input events but by timer ticks as well. We evaluate the
expressiveness of our approach through a gallery of diverse examples that demonstrate coverage over taxonomies of both interaction
and animation. We also critically refect on the conceptual affordances and limitations of our contribution by interviewing fve expert
developers of existing animation grammars. These refections highlight the key motivating role of in-the-wild examples, and identify three
central tradeoffs: the language design process, the types of animated transitions supported, and how the systems model keyframes.

Index Terms—Information visualization, Animation, Interaction, Toolkits, Systems, Declarative Specifcation

1 INTRODUCTION

Rapid prototyping is critical to the visualization authoring process.
When making an explanatory graphic, rapid prototyping allows a vi-
sualization author to evaluate candidate designs before committing to
refning one in detail. For exploratory data analysis, rapid prototyping is
equally key as visualization is just one part of a broader workfow, with
analysts focused on producing and analyzing a chart to yield insight
or seed further analysis. However, consider the friction of visualizing
faceted data: an author might choose between depicting facets as a
small multiples display, on-demand via interaction (e.g., dynamic query
widgets), or played sequentially via animation. These designs make
different trade-offs between time and space and, as a result, research
results suggest they afford readers different levels of clarity, time com-
mitment, and visual interest [33]. Despite these differences, the designs
express a shared goal — to visualize different groupings of the data —
and a visualization author might reasonably expect to be able to easily
move between the three to make the most appropriate choice.

Unfortunately, existing visualization toolkits can present a highly
viscous [44] specifcation process when navigating this time-space
trade-off. One class of toolkits supports either interaction or ani-
mation, but not both. Such systems include Vega [38] and Vega-
Lite [36] — which offer interaction primitives in the form of signals
and selections but do not provide abstractions for animation — as well
as gganimate [43], Data Animator [46], Canis / CAST [9, 10], and
Gemini/Gemini2 [19,20] — which express animation in terms of transi-
tions between discrete visualization states known as keyframes but do
not provide treatment for interaction. As a result, these systems force vi-
sualization authors to prematurely commit [44] to either an interaction-
or animation-friendly abstraction when choosing their prototyping tool,
and thus limit authors’ ability to explore alternative designs. A second
class of toolkits (including D3 [3] and Plotly [1]) support both modali-
ties but do so via largely distinct abstractions (namely, transitions or
frames for animation, and event handlers or a typology of techniques
for interaction). Thus, an author must often either restructure or rewrite
their specifcations to consider interaction and animation in parallel.

In this paper, we present Animated Vega-Lite: extensions to Vega-
Lite to support data-driven animation. Its design is motivated by the
key insight that interaction and animation are parallel concepts (Sect. 3).
Whereas interactions transform data (e.g. fltering) and update visual
properties (e.g. re-coloring marks) in response to user input, animations
do the same in response to a timer. From this perspective, interactive
and animated visualization techniques occupy a spectrum of dynamic,
event-driven behaviors. Thus, with Animated Vega-Lite, animated
visualizations (like their interactive counterparts) are modeled as time-
varying data queries — an approach that allows us to provide a unifed
set of abstractions for static, interactive, and animated visualizations.

Animated Vega-Lite offers two abstractions of time that allow ani-
mations to compose with Vega-Lite’s existing grammars of static and
interactive visualizations (Sect. 4). From the perspective of interaction,
time is an event stream: a source of events analogous to clicks and
keypresses produced by a user. These events drive Vega-Lite selec-
tions, which apply dynamic data queries to visual encodings. Thus, by
modeling time as an event stream, users can seamlessly specify and
move between interactive and animated behavior in the same specifca-
tion. From the perspective of Vega-Lite’s grammar of graphics, time
is an encoding channel. Just as x and y encodings map data values to
spatial positions measured in pixels, a time encoding maps data values
to temporal positions measured in elapsed milliseconds. Compared to
the event stream abstraction, the encoding channel abstraction is lighter-
weight, but less expressive. This allows a visualization author to get
started quickly with an animated chart and to move easily between an
animated and a faceted visualization by switching a time channel for a
row or column one. And, for added customizability, users can always
turn a time-as-encoding specifcation into a time-as-event-stream one.

We implement a prototype compiler that synthesizes a low-level
Vega specifcation with shared reactive logic for interaction and anima-
tion (Sect. 5). Following best practices [32], we assess our contribution
with multiple evaluation methods. Through a diverse example gallery
(Sect. 6), we demonstrate that Animated Vega-Lite covers much of
Yi et al.’s interaction taxonomy [51] and Heer & Robertson’s anima-
tion taxonomy [12] while preserving Vega-Lite’s low viscosity and
systematic generativity. We also interview fve expert developers of
four existing animated visualization grammars [9, 10, 19, 20, 42, 46]
to critically refect [35] on the tradeoffs, conceptual affordances, and
limitations of our system (Sect. 7). We discuss the important role ex-
ample visualizations play in grammar design and analyze three areas of
tradeoffs: the language design process, support for animations within
vs. between encodings, and models of animation keyframes.

• Jonathan Zong and Josh Pollock are co-frst authors.
• The authors are with MIT CSAIL. E-mails: {jzong, jopo, dwootton,

arvindsatya}@mit.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifer: xx.xxxx/TVCG.201x.xxxxxxx

mailto:reprints@ieee.org
mailto:arvindsatya}@mit.edu
mailto:reprints@ieee.org
mailto:arvindsatya}@mit.edu

2 RELATED WORK

Our contribution is motivated by perceptual work on the value of com-
bining interaction and animation, and is informed by the design of
existing toolkits for authoring animated data visualizations.

2.1 Animation in Information Visualization

In a classic 2002 paper, Tversky et al. [47] question the effcacy of
animated graphics. In reviewing nearly 100 studies comparing static
and animated graphics, the authors were unable to fnd convincing
cases where animated charts were strictly superior to static ones. Vi-
sualization researchers have since contributed a body of studies that
have identifed reasons to be both optimistic and cautious about the
value of animation in visualization. For instance, several studies have
demonstrated advantages when animating chart transitions [5, 7, 12, 18]
or directly animating data values to convey uncertainty [13, 17]. How-
ever, these studies have also echoed concerns from Tversky et al. that
animations are often too complex or fast to be perceived accurately —
for instance, Robertson et al. found that animated trend visualizations
are outperformed by static small multiples displays [33].

To ameliorate these limitations of animation, Tversky et al. suggest
composing animation with interactivity, particularly through techniques
that allow reinspection or focusing on subsets of depicted data. Robert-
son et al. began to probe this question by testing an interactive alter-
native alongside the static and animated stimuli — here, clicking an
individual mark adds an overlaid line that depicts its trajectory over time.
They fnd that although participants are no more accurate under this
interactive condition, they perform faster when using this visualization
for data analysis [33]. In follow-up work, Abukhodair et al. [2] further
contextualize Robertson’s results, fnding that interactive animation
can be effective and signifcantly more accurate than animation alone
when users want to drill down into the data or have specifc questions
about points of interest. More recent results are similarly promising: in
eye-tracking studies, Greussing et al. [11] fnd that interactive animated
graphics not only received more attention than static or interactive-only
equivalents, but these charts also produced higher knowledge acqui-
sition in participants. The authors believed that the enhanced affects
on memory and performance resulted from an increase in engagement
and attention on the visualization, which is in line with additional re-
search on attention [4]. Our work is motivated by these results. By
providing a unifed abstraction of interaction and animation, Animated
Vega-Lite allows analysts to rapidly switch between the two modalities,
or compose them together to best suit their needs. Moreover, as our
abstractions preserve Vega-Lite’s generative properties, we believe our
contribution lowers the threshold for conducting future such studies by
allowing researchers to more systematically isolate, vary, and compare
individual interaction and animation techniques.

2.2 Authoring Interaction and Animation

In Sect. 3.1, we describe the conceptual similarities between Animated
Vega-Lite and Functional Reactive Programming (FRP). Moreover, in
Sect. 7 we conduct a detailed comparison between Animated Vega-Lite
and gganimate [42], Data Animator [46], Gemini/Gemini2 [19, 20],
and Canis/CAST [9, 10]. Here, we instead survey other systems for
authoring interaction and animation that have informed our approach.

Visualization toolkits such as D3 [3], Plotly [1], and Matplotlib [14]
offer a number of facilities for authoring and composing interaction and
animation including typologies of techniques (e.g., brushing, hovering,
and animation frames) through to event callbacks and transition func-
tions. Technique typologies can help foster a rapid authoring process,
allowing designers to easily instantiate common techniques, but also
present a sharp abstraction cliff [44]. If designers wish to produce
more custom interaction or animation techniques, they must turn to
an entirely different notation: authoring low-level, imperative event
callbacks or transition functions. This abstraction cliff also increases
the viscosity of the authoring process [44]. For instance, to switch
between the static, interactive, and animated displays of faceted data
described in the introduction using D3 would involve restructuring the
specifcation code in non-trivial ways — a problem that is exacerbated

Example Interaction intent [51] Animation type [12]
technique

Conditional Select —
encoding
Panning Explore View transformation
Zooming Abstract / Elaborate View transformation
Axis re-scaling Reconfgure Substrate

transformation
Axis sorting Reconfgure Ordering
Filtering Filter Filtering
Enter/exit Explore Timestep
Multi-view Connect —
Changing Encode Visualization change,
encodings Data schema change

Table 1. Techniques common to interaction and animation taxonomies.

if HTML templates are used to generate the SVG rather than the d3-
selection, as is increasingly the case when working with modern
frontend frameworks such as Svelte, Vue, or React.

In contrast, Animated Vega-Lite, like its predecessor, prioritizes
concise high-level declarative specifcation. As Sect. 3 describes, users
can make atomic edits (i.e., changing individual keywords, or adding
a localized handful of lines of specifcation code) to rapidly explore
designs across the three modalities. The tradeoff, however, is one of
expressiveness. Animated Vega-Lite users are limited to composing
language primitives; while these primitives are suffcient to broadly
cover interaction and animation taxonomies (Sect. 6), their expressive
range will necessarily be smaller than their lower-level counterparts.

3 MOTIVATION: UNIFYING INTERACTION AND ANIMATION

In this section, we discuss similarities between interaction and anima-
tion that we observe. These similarities drive our design decisions,
allowing us to extend Vega-Lite with only minimal additional language
primitives, and yielding a low-viscosity grammar that makes it easy to
switch between static, interactive and animated modalities.

3.1 Conceptually Bridging Interaction and Animation

We observe that interaction and animation share conceptual similarities
at both low and high levels of abstraction. At a low level of abstraction,
Functional Reactive Programming (FRP) languages like Flapjax [26]
and Fran [8], as well as FRP-based visualization toolkits like Vega [37],
have shown that interaction and animation can both be modeled as
event streams. The Vega example gallery demonstrates how this uni-
fed abstraction offers consistency, with similar semantics expressed
through similar syntactic forms [44]. Namely, the gallery recreates the
Gapminder global health scatter plot, originally an animated visualiza-
tion produced by Hans Rosling [34], but as an interactive visualization
driven by the DimpVis direct manipulation technique [21]. We ob-
serve that, although it would be tedious to do manually, a user could
convert this interactive visualization back to the original animated one
by replacing signals near the top of the datafow, which react to in-
coming drag events, with signals that respond to timer events instead:
where these signals map the drag event’s position to a year value, the
timer signals would simply emit the next year value on each event.
The rest of the downstream reactive logic would remain unchanged.
However, as the Vega authors found [38], additional language design is
necessary to ensure FRP primitives compose together with grammar of
graphics constructs and to facilitate higher-level authoring of dynamic
visualizations.

To analyze conceptual similarities between interaction and anima-
tion at a higher-level of abstraction, we look to Yi et al. [51] and Heer
and Robertson [12] that taxonomize techniques for each modality re-
spectively. These taxonomies are defned by drawing on example visu-
alizations, and although they have been defned separately, share many
motivating techniques (Table 1). For example, Heer and Robertson cite

A C DB E

Fig. 1. An analyst’s workfow with Animated Vega-lite. A) Static visualization of bird migrations. B) Adding interaction to hover over a migration path
and view a tooltip. C) Switching from static lines to animated circle marks. D) Adding animated path trails for the previous 5 days. E) Adding an
interactive slider to scrub through the animation.

panning as an example of view transformation because it changes the
reader’s viewpoint while leaving data schemas and encodings intact.
Yi et al. also consider panning, categorizing it as an example of an
explore interaction, because it involves showing a new subset of data as
points shift in and out of the viewport. Zooming, another example of
view transformation, is also described as an abstract/elaborate inter-
action because it can be used to show data at different levels of detail.
As we show in Table 1, we observe substantial overlap in techniques
referenced by both taxonomies. Though select interactions lack an
explicitly defned corresponding animation type, conditional encoding
is a commonly used technique in animated visualizations. Similarly,
though there is no corresponding category in Heer and Robertson’s tax-
onomy for connect interactions, animations applied to shared backing
data across multiple views can fulfll the same purpose of highlighting
relationships between related points.

3.2 Low-Viscous Authoring: An Example Usage Scenario

A unifed abstraction for static, interaction and animation also pro-
motes a low-viscous authoring process (i.e., being able to easily switch
between modalities, or compose them together). To illustrate the affor-
dances of this approach, we present an example walkthrough following
Imani, an orthonologist, as she plans a new birdwatching expedition.
Imani has a bird migration dataset comprising the average latitudes and
longitudes for a variety of bird species, for every day of the year [22].
To ensure a productive trip, Imani wants uncover how migration pat-
terns correspond to different times of the year and geographic regions.

Static (Fig. 1A). Imani begins her analysis with a static visualization
to get an overview of the dataset. She plots a map, and visualizes
migration paths using line marks: each bird species is depicted as a
single, uniquely-colored line, connecting the individual daily points
along their given latitudes and longitudes. However, Imani is quickly
overwhelmed as the size of the dataset produces too many overlapping
lines for this static view to be useful, even after adjusting mark opacity.

Interactive (Fig. 1B). To pick out individual bird species, and begin
a cycle of generating and answering hypotheses, Imani thinks to layer
some interactivity on the static display. She adds a point selection
named highlight and driven by mouseover events. By default this
selection is populated with the data tuple underneath the mouse cursor,
and additional tuples are added or toggled when the shift modifer
key is pressed. Imani writes a conditional encoding to interactively
adjust mark appearance: selected paths are drawn at full opacity and
in a larger size, while unselected paths are drawn with lower opacity
and at a smaller size. Thus, as Imani moves her mouse across the
visualization, she is able to better trace individual paths, and she adds a
tooltip encoding channel to surface and note species’ names.

This interactive view gives Imani a better sense of migration paths.

But, to be able to plan her expedition, she needs to understand where dif-
ferent bird species may be on any given day. Until this point, Imani has
used vanilla Vega-Lite abstractions. In the subsequent steps, we show
how features of Animated Vega-Lite help Imani deepen her analysis.

Time Encoding Channel (Fig. 1C). Imani swaps to a circle mark
and maps day (a feld that encodes the day of the year from 0 to 365) to
the new time encoding channel. With these two edits, each bird species
is drawn as a circle indicating its location on a particular day, and the
visualization animates through day values. Imani can now follow the
path bird species travel over the course of a year.

Time Event Stream (Fig. 1D). Imani, however, is keenly aware that
her dataset only contains average values for each species. Birds tend to
appear at a given location within a small window of time around the
average day in the dataset. Thus, to ensure she does not make an erro-
neous conclusion, Imani wants to visualize this variability as a path trail.
To do so, she adds a new point selection named spread window,
which contains a custom predicate — a function that identifes which
data tuples should be considered as falling within the selection. In this
case, Imani writes a predicate to select data from the fve days previous
to the current day. She does this by writing inequality expressions refer-
encing the reserved name anim value, which stores the current data
value of the animation. In contrast to the existing highlight point
selection, which is updated on user input events, spread window
is instead populated and re-populated on every timer tick. She uses
spread window to dynamically flter the circle marks, ensuring only
data values that lie within the selection are displayed and animated. To
visually distinguish the current day’s points, she also elaborates the
time encoding into an explicit selection called current frame and
uses it to drive a conditional opacity encoding. She renders current
points at full opacity while rendering the trailing points at less opacity.

Composing Interaction + Animation (Fig. 1E). While watching
this path-trail animation, Imani notices that a cluster of birds appear
to visit Pensacola, Florida during late March and notes this region as
a potential location for her expedition. However, before she lets her
colleagues know, she wants to investigate the migration patterns of the
birds that come through the area — if these species tend to co-locate in
other parts of the world, there is less of a reason for birders to travel
to Pensacola specifcally. To answer this question, Imani needs fner
control over the animation state. She binds the current frame
selection to an interactive range slider, and can now toggle between
animating and interactively sliding the day feld. She scrubs the slider
to the day when the birds pass through Pensacola, and to track these
species in the visualization, she modifes the interactive highlight
selection to fre on click instead of hover. Imani multi-selects (i.e.,
clicking with the shift key pressed) the birds that pass through the
area, and then scrubs to a different day. Here Imani can see that these

1955

2005

A B

C

Fig. 2. Animated Vega-Lite specifcation of the infuential Gapminder animation [34]. (A) A minimal specifcation using only time encoding. (B) The
same specifcation elaborated to show default encoding properties and a default selection. (C) Selected keyframes from the resulting animation.

birds come from 5 unique nesting sites across the mid-west US to
eastern Canada. This is promising as it indicates that these species
uniquely overlap in Pensacola, making it a prime viewing destination.

Summary. With Animated Vega-Lite, Imani was able to move be-
tween static, interactive, and animated visualizations through a series
of atomic edits or otherwise localized changes rather than larger-scale
refactoring or restructuring of code. Moreover, we have extended Vega-
Lite’s high-level affordances to animation: Imani was able to express an-
imation as data selections and transformations, rather than manipulating
keyframes or specifying transition states; and, the Animated Vega-Lite
compiler synthesized appropriate defaults and underlying machinery
for the animation to unfold correctly. Finally, as Animated Vega-Lite
offers a unifed abstraction, Imani was able to reuse Vega-Lite’s existing
primitives to author mixed interactive-animated visualizations as well
as custom techniques without the need for special-purpose functions —
e.g., combining animations with on-click highlighting and composing
selections with a window data transform to draw trailing marks, rather
than using a shadow function as with gganimate.

4 A GRAMMAR OF ANIMATION IN VEGA-LITE

In Animated Vega-Lite, users specify animation using a time encod-
ing channel and timer-driven selections. Time encodings provide a
light-weight way to convert faceted static visualizations into animations.
To further customize the animation design or easily add interaction,
users can specify animations as selections instead. Selections express
dynamic data queries, and are now populated either by input events (as
with vanilla Vega-Lite) or, now, via timer ticks. Defned selections can
then be used to drive data transformations, scale functions, or condi-
tionally encode visual properties. Our animation model expressively
extends existing abstractions for static and interactive visualizations
while minimally increasing language surface area and complexity.

4.1 Time Encoding Channel

In Vega-Lite, encodings determine how data values map to the visual
properties of a mark (also known as channels). Vega-Lite includes
two channels for spatial position, x and y. Animated Vega-Lite adds
a new channel for temporal position, called time. A user specifes a
time encoding by providing a field property, which is a string of the
name of a data column. The feld can be any measure type with a sort
order (quantitative, temporal, ordinal), and does not necessarily need
to represent a timestamp. The system uses distinct values from this
column to group data rows into temporal facets called keyframes. Over
the duration of the animation, each keyframe is shown sequentially.

Fig. 2A shows the Animated Vega-Lite specifcation for Rosling’s
Gapminder animation [34]. The time encoding, highlighted in yellow,
maps the dataset’s year feld to the time encoding channel. The system
uses the distinct values of year to group rows into keyframes. In other
words, there is one keyframe per possible value of year in the dataset
(i.e. 1955, 1960, 1965, ..., 2005) (Fig. 2C).

4.1.1 Key Field

In-betweening, more commonly called tweening, is a standard anima-
tion technique that involves generating additional frames to smoothly
transition between two keyframes. By adding tweening, the animation
will give the visual impression of continuous change over time even
when data represents discrete measurements. In data visualization,
tweening takes on additional meaning as it requires generating and
interpolating between values that are not present in the dataset. In
Animated Vega-Lite, to specify tweening between keyframes, the user
specifes a key property in the time encoding channel, which refer-
ences a feld name. This key feld is used to group rows together across
keyframes. For two given successive keyframes, rows that share the
same value for the key feld are treated as the start and end states for a
single mark instance. Key values should be unique within a keyframe
to prevent ambiguity; otherwise, a single mark instance might have
multiple start or end states, resulting in undefned behavior. If the user
does not specify a key feld, the Animated Vega-Lite compiler attempts
to infer a sensible default based on the mark type and other specifed
categorical channels such as color or detail — an approach that
follows Vega-Lite’s existing inferences.

In the Gapminder example, Fig. 2B shows the Gapminder spec from
Fig. 2A with default values specifed explicitly. Here, country is used
as the default key feld as it is also encoded on the color encoding
channel. Consider the successive keyframes with year values 1955
and 1960. For each year, each scatterplot point is identifed by a unique
country value. Therefore, to tween from 1955 to 1960, the system
interpolates the two rows for each country to produce the corresponding
in-between point at each animation frame.

4.1.2 Time Scale

An encoding uses a scale function to map from the data domain to a
visual range. For spatial encoding channels, this range is measured
in pixels relative to the bounding box of the rendered visualization.
For the time encoding channel, we measure the range in milliseconds
elapsed from the start of the animation. Users specify the timing of
the animation using a time scale (for example, by specifying either an
overall animation duration or the amount of time between keyframes as
a step). As with existing encoding channels, if a scale is not specifed
by the user, Vega-Lite infers default scale properties. By default, scales
for the time encoding channel use the unique values of the backing feld
as the scale domain, and create a default step range with 500ms per
domain value. For example, the Gapminder domain is a list of every
ffth year between 1955 and 2005, inclusive. The default range maps
1955 to 0ms, 1960 to 500ms, 1965 to 1000ms, and so on. A user can
override this default range to slow down or speed up the animation.

Though the default domain is suffcient to express most common
animations, a user may want to override the domain. Supplying a
custom domain is useful for specifying non-keyframe-based animations
that require direct reference to in-between values, or require animating
through values that are missing from the dataset. For example, Fig. 3
shows an example of such a use case. The animation should advance

Fig. 3. Animation of Dunkin’ Donuts stores’ opening and closing times.
With a custom domain and predicate, the animation advances through 24
hours at a constant rate and conditionally colors each store if the current
time is between the store’s open and close times.

through 24-hour time span at a constant rate. However, the dataset does
not contain a feld that has values that are evenly spaced in the desired
domain. So, with a default scale domain, the animation would appear
to jump between time stamps rather than move through them smoothly.
To achieve the desired behavior, the user instead specifes a custom
domain representing the continuous interval between 00:00 and 23:30.

4.1.3 Re-scale
By default, the visualization’s data rectangle (or viewport) is fxed
to the initial extents of the x- and y-scales calculated from the full
dataset. However, for keyframe animations, only a subset of data is
shown at any given time. If a user wants to re-calculate the viewport
bounds based on only the data included in the current keyframe, rather
than the original full dataset, they can set a fag in the time encoding
called rescale. When rescale is true, the viewport’s bounds are
recomputed at each step of the animation. We refer to this concept as
re-scaling because re-calcuating the viewport bounds involves updating
the domains of the x and y scales at each keyframe.

Fig. 4 demonstrates the use of rescale. Rescale is enabled in
Fig. 4A, where the viewport updates according to the current selection.
The visualization remains tightly zoomed on the currently displayed
bars, with the longest bar always scaled to nearly the full width of the
viewport. In contrast, Fig. 4B has rescaling disabled. The viewport is
initially calculated with the full dataset and remains fxed. This would
be appropriate for Gapminder, because we want to show the countries
moving along a fxed scale. However, it is less helpful for bar chart
race. Instead of enabling positional comparisons to a fxed scale, the
animation prioritizes making the ordering of the top-ranked bars salient.

4.2 Selections with a Timer Event Stream

Selections are subsets of data points that are populated when updates
occur in an event stream. In Vega-Lite’s interactive grammar, selections
are defned using streams of user input events (e.g., clicks, mouse move-
ments, or keyboard presses). The system uses the event’s properties to
query a set of data points. The selected data can then be applied to up-
date downstream primitives in the visualization specifcation including
data transformations, scale functions, or conditional visual encodings.
For example, a selection defned using the mouseover event may be
used to highlight marks that a user hovers over with their cursor. Under
the hood, the selection receives a stream of mouseover events with
x and y coordinates in pixels. It uses the scales associated with the
x and y encoding channels to invert these screen coordinates back to
data coordinates (i.e. values in the domain of the corresponding scale).
A default predicate function iterates over all rows in the dataset, and
includes the rows matching those data values in the selection.

Animated selections are analogous to interactive selections. How-
ever, instead of reacting to input events, animated selections use a
timer event stream to advance an internal clock representing the
elapsed time of the animation in milliseconds (ms). This clock resets to
0ms when it reaches the end of the range defned by the time encoding’s

scale (i.e. the animation loops the duration of the time scale’s range).
As the clock updates, the elapsed time value is mapped to a value in
the time domain (i.e. the time encoding’s feld values). The animation
selection updates to include all data points matching that value.

As selections rely on scales to convert map time to data values,
selection-based animations still require a time encoding channel to be
defned. In fact, all animations that can be expressed with only a time
encoding can be elaborated into selection-based animations. In other
words, selection-based animations are strictly more expressive than
animations using only time encoding.

4.2.1 Applying Selections
In Vega-Lite, selections can be applied to other language constructs,
including conditional mark encodings, scale domains, or data trans-
formations [52]. This property of composition continues to hold with
Animated Vega-Lite: animated and interactive selections can be used
interchangeably wherever selections are supported in the Vega-Lite
language. Therefore, selections driven by timer events inherit the ex-
pressiveness of interactive selections in terms of Yi et al.’s taxonomy
of interaction techniques [51]. Animations can be used to: select
marks of interest; explore subsets of data (panning and zooming); re-
confgure data into different transformed states, connect related items;
abstract/elaborate through overview and detail; and flter data dynami-
cally. However, they cannot be used to change the properties of visual
encodings on the fy, which is an interaction technique that falls outside
of the selection-based model and is a limitation of base Vega-Lite.

4.2.2 Predicate
As the animation’s elapsed time advances, the selection uses the scale
defned in the time encoding to invert elapsed milliseconds (in the
scale’s range) to a data value (in the scale’s domain). As a result, at any
given time, there is an internal variable that has a data value correspond-
ing to the animation’s current time. When the Vega-Lite specifcation
is compiled into Vega, this variable is represented as a Vega signal
called anim value. In the Gapminder example, anim value starts
at 1955 at 0ms, and advances to 1960, 1965, ..., 2005.

To construct keyframes, the selection queries a subset of data tuples
to include in the keyframe based on the current value of anim value.
By default, tuples are included in the keyframe if their value in
the time encoding’s feld (e.g. year for Gapminder) is equal to
anim value. However, to defne alternate inclusion criteria for deter-
mining keyframes, users can specify custom predicate functions. For
example, if at every step of the animation, a user wished to show all
points with year less than or equal to anim value, they would use
the following predicate:

{"field": "year", "lte": "anim value"}
Previously, Vega-Lite did not allow users to customize the selection

predicate because the majority of interactions could be expressed us-
ing a combination of default predicates and selection transformations.
Nonetheless, enabling predicate customization in the selection specif-
cation also increases the expressiveness of the interactive grammar.

4.2.3 Input Element Binding
Using the bind property, a user can populate a selection using a
dynamic query widget (such as an HTML slider or checkbox). For
animated selections, input element binding offers a convenient way to
add interactive playback control to the animation. For instance, the
user can bind an animated selection to a checkbox to toggle whether
the animation is playing or paused. Similarly, they can bind a selection
to a range slider and drag to scrub to a specifc time in the animation.

Scrubbing the animation with the slider surfaces an interesting design
challenge when combining animation and interaction: how should
the system delegate control between the animation timer and user
interaction? Initially, the animation is driven by the timer, with the
slider visualizing timer updates. When the user starts dragging the
slider, the system pauses the animation and delegates control to user
interaction. Pausing is necessary so that the slider does not continue to
advance forward while the user is currently scrubbing. When the user is
done scrubbing, they may want to give control back to the animation. To

2000 2000

2019

2019

BA A

Fig. 4. Demonstration of the rescale time encoding property recreating a D3 bar chart race example [28]. (A) rescale is true: the viewport is
recalculated on each keyframe. (B) rescale is false: the viewport is calculated on the whole dataset, and does not update with the selection.

facilitate this, Animated Vega-Lite automatically includes a play/pause
checkbox alongside bound sliders. The user can simply re-check the
box to give control over the animation back to the timer.

4.2.4 Pausing
Animated Vega-Lite supports pausing in two ways: by interaction,
and by data value. Interactive pauses are specifed using the filter
property of Vega-Lite event streams. Users can provide the name of a
Vega-Lite parameter to the filter property of a timer event stream.
Parameters can be either selections or variables. When the provided
parameter evaluates to true (i.e. is a non-empty selection or a true
boolean variable), the flter will capture incoming events, preventing
the animation clock from advancing. When the paramater evaluates
to false, the events will resume propagating and the animation will
continue. For example, a user can bind a checkbox to a parameter
named is playing, and use the following event stream defnition to
pause the visualization when the box is checked:

"on":{"type": "timer", "filter": "is playing"}
Pausing by data value is specifed using the pause property of an

animated selection defnition. The user provides a list of data values
to pause on, and the duration of each pause. For example, a user can
specify that the Gapminder animation should pause on the year 1995
for 2 seconds, to draw attention to the data for that year:

"pause": [{"value": 1995, "duration": 2000}]

4.2.5 Global Easing
Easing is a common animation technique that involves controlling the
rate that the animation timer advances. Easing is typically implemented
using a palette of pre-defned functions that map an animation time do-
main to a transformed time domain. For example, an exponential easing
function might cause the animation clock to begin advancing slowly,
and then exponentially accelerate as the animation progresses. In An-
imated Vega-Lite, the animation clock advances linearly by default.
However, users can use the easing property of a selection to specify
an easing function to apply to the whole duration of the animation.
Animated Vega-Lite exposes D3’s named easing functions [27].

5 IMPLEMENTATION

We implement Animated Vega-Lite using a prototype compiler, wrap-
ping the existing Vega-Lite compiler to ingest Animated Vega-Lite spec-
ifcations and output a lower-level Vega specifcation. The Animated
Vega-Lite prototype compiler begins by expanding a user-supplied
specifcation into a “normalized” format with all implicit default values
flled in explicitly. This step includes generating default selections and
transforms for animations specifed using only time encodings, and
flling in default scale and key defnitions. This normalized specifcation
is passed to the next compiler step to simplify processing.

To convert Animated Vega-Lite into low-level Vega, we use the exist-
ing Vega-Lite compiler to make the initial conversion into Vega (using
a copy of the specifcation with animation removed), and then call a
series of functions to compile animation-specifc parts of the spec and
merge them with the output Vega. Because Vega-Lite’s high-level ab-
stractions do not have a one-to-one mapping to low-level Vega concepts,
seemingly-isolated Vega-Lite fragments will typically make changes
in many different parts of the Vega spec. Each of these functions takes

in fragments of Animated Vega-Lite and standard Vega, and outputs a
partial Vega specifcation that includes dataset, signal, scale, and mark
defnitions to merge into the output.

Compilation happens in six steps. First, compileAnimation-
Clock uses defnitions of animated selections and time encoding chan-
nels to create Vega signals and datasets for controlling the current state
of the animation, handling pausing, and interfacing with interactive
playback controls. Next, compileTimeScale takes in a defnition
of a time encoding alongside Vega marks and scales. It creates Vega-
level scales for the time encoding, and signals to handle inversions
between the animation clock and the corresponding data value at that
time. It also applies rescaling to mark encodings if applicable. com-
pileAnimationSelections then ingests defnitions of animated
selections to produce Vega signals and datasets that implement custom
predicates, pausing and easing, and input element binding. Fourth,
compileFilterTransforms takes animation selections and any
flter transforms that reference those selections, and materializes the se-
lections as fltered datasets in Vega. These datasets provide the backing
data for rendering marks at each keyframe. compileKey then uses
the time encoding specifcation to generate datasets and signals that
handle tweening between keyframes. Finally, compileEnterExit
supports top-level enter and exit encoding defnitions in Animated
Vega-Lite, converting them into Vega-level enter and exit encodings.
Because of existing limitations in Vega, enter and exit currently are
not well-supported for animation. However, pending Vega support,
designers should be able to control the behavior of visual encodings as
marks enter and exit the current keyframe.

We chose to implement our compiler as a wrapper around the exist-
ing Vega-Lite compiler in order to facilitate rapid prototyping. However,
our current approach faces performance challenges that could be im-
proved with internal changes to Vega and Vega-Lite. For example,
we currently support tweening by creating three separate datasets: the
current keyframe, the next keyframe, and a joined dataset with tweens
computed as a derived column. This expensive operation causes notice-
able lag on large datasets. In future implementations, we can instead
create a Vega datafow operator that leverages the animation’s semantics
to compute tweens more effciently. For example, instead of computing
multiple datasets independently and performing a join, the operator can
create a single dataset backed by a sliding window over the time facets.

6 EVALUATION: EXAMPLE GALLERY

To evaluate Animated Vega-Lite’s expressiveness, we created an exam-
ple gallery to demonstrate coverage over both Yi et al.’s taxonomy of
interaction intents [51] and Heer & Robertson’s taxonomy of transition
types in animated statistical graphics [12]. As Fig. 5 shows, we support
6 / 7 interaction categories and 5 / 7 animation categories.

Fig. 5a demonstrates an overview + detail visualization. A selection
controls a brush over the bottom view, which sets the zoomed viewport
of the top view. This selection is defned using a predicate that defnes
a sliding window over the x-axis feld. When the brush is driven
by animation, the selection is updated on each timer event. When
the brush is driven by interaction, the selection is instead updated on
drag events. Because the original Vega-Lite selection model unifes
panning and zooming as selections applied to a scale domain, this
approach can be adapted to animate arbitrary geometric panning and

Year:Year:

A B C

D E F

Fig. 5. Animated Vega-Lite examples demonstrating coverage over interaction and animation taxonomies [12,51] (see Fig. 4 for an example substrate
transform and Fig. 3 for select). A) View transform via panning, abstract/elaborate via overview + detail, and connect ing multiple views. B) Filtering
data via a predicate. C) Ordering / reconfguring a sorted axis in a bump chart. D) Exploring sequential timesteps of an index chart. E) A hypothetical
outcome plot in the style of the New York Times [15]. F) An interactive brush selection over Gapminder.

zooming behavior. This visualization demonstrates a view transforma-
tion, changing the reader’s viewpoint by panning and zooming the top
view. It also demonstrates an abstract/elaborate intent by showing the
data at different levels of detail in the top and bottom view, and the
connect intent by showing corresponding data across multiple views.

Fig. 4 shows a bar chart’s x-scale dynamically recalculating on each
frame using the rescale property of a time encoding (Sect. 4.1.3).
This animation technique demonstrates a substrate transformation
through scale manipulations. It also demonstrates the reconfgure intent
by showing a new spatial arrangement of the data.

In Fig. 3 and Fig. 5b, we apply a conditional flter over the whole
dataset, with flter parameters changing over time. In contrast to
faceting, fltering can leverage custom selection predicates to show
and hide data — a single data point can appear in multiple groups. Both
taxonomies contain a category for fltering, shown here by adding or
removing elements from the display. Fig. 3 additionally demonstrates a
select intent by using conditional encoding to highlight selected data.

Fig. 4 and Fig. 5c show examples with a sorted axis. When a key
is specifed in a time encoding, the system automatically tweens an
element’s position even when its sort index has changed in the next
keyframe. Continually sorting elements as the underlying data changes
demonstrates an ordering transition, as well as a reconfgure intent.

Time encodings transition between sequential time values by default
in Animated Vega-Lite (e.g. Fig. 2). Fig. 5d demonstrates an additional
example of this animation. A default animated point selection is applied
to a data transform that re-normalizes a stock price time-series chart on
each tick. The original Vega-Lite paper contains an interactive version
of this example, which instead populates the point selection on mouse
hover events [36]. These examples demonstrate timestep transitions,
which also fulfll the explore intent by showing new data points at each
step. Axis re-normalization is also an example of a reconfgure intent.

In addition to achieving broad coverage over the two taxonomies, our
system also supports simulation techniques including hypothetical out-
come plots (Fig. 5e) [13]. And, as previously discussed in Sect. 4.2.1,
animated selections can be applied to the same set of dynamic visual be-
haviors as interactive selections. Consequently, users can easily switch
between timer and input event streams when prototyping existing inter-
action techniques in Vega-Lite. For example, Fig. 5a and Fig. 5d show
animated selections driving common interaction techniques — panning
and re-normalizing, respectively. Users can also easily compose inter-
action techniques with animated visualizations by defning additional
selections. For example, Fig. 5f demonstrates an interactive brush used
to highlight a region of an animated Gapminder visualization. Points of
interest are conditionally colored as they enter or exit the brush region.

Discussion and Limitations. Like the original Vega-Lite, Animated
Vega-Lite intentionally trades some limits to expressivity for gains in
concise, high-level, declarative specifcation. In Sects. 7.2.1 & 7.2.2, we
detail this expressiveness tradeoff in terms of the classes of animation

techniques (Animated Vega-Lite primarily supports scene techniques
instead of segue) as well as the implications on how keyframes are
modeled and generated (Animated Vega-Lite supports non-parametric
keyframe transitions, and offers some limited support for parametric
keyframe transitions). Thus, lower-level and imperative languages will
necessarily be more expressive: for instance, D3 can express both scene
and segue animations, but using different language constructs (timer
event loops and transition functions, respectively). As these sections
describe, offering high-level declarative specifcation that unifes not
only these distinct conceptual models of animation, but also interaction
and static charts, remains a compelling direction for future work.

By extending Vega-Lite, Animated Vega-Lite also inherits its pre-
decessor’s limitations. For instance, Vega-Lite selections cannot alter
visual encodings or data transformation pipelines at runtime (the encode
interaction type in Yi et al.’s taxonomy [51]); thus, Animated Vega-
Lite cannot support the visualization change or data schema change
transition types in the Heer & Robertson taxonomy [12].

7 EVALUATION: CRITICAL REFLECTION

To identify our grammar’s design tradeoffs, we compared our approach
to existing animated visualization grammars following the critical
refections evaluation method [35]. We recruited fve developers of
existing grammars: John Thompson and Leo Zhicheng Liu1 of Data
Animator [46], Tong Ge of Canis [10] and CAST [9], Thomas Lin
Pedersen of gganimate [43], and Younghoon Kim of Gemini [19] and
Gemini2 [20]. We focused on animation grammar developers because
the interactive grammar was evaluated in the original Vega-Lite paper.
With each participant, we conducted a one-hour pre-interview. We
then asked them to asynchronously engage with our grammar for an
extended time by reading a system walkthrough and grammar docu-
mentation similar to Sect. 3 and Sect. 4, respectively, and run examples
similar to those found in Sect. 6. We further suggested participants
write new specifcations and/or port other examples, including exam-
ples from their own tools. We encouraged participants to take notes and
refect on the design of Animated Vega-Lite during the process. Finally,
we conducted post-interviews with each participant that lasted 30–60
minutes. Each participant was offered a $125 gift card as compensation.

Our goals were to (i) compare and contrast their design processes
with ours, (ii) understand differences and design tradeoffs between
their grammars and ours, and (iii) generate insights about the direction
of future animation grammars. During the interviews, three of the
authors of this paper began developing initial thematic hypotheses.
After the interviews, we independently conducted a thematic analysis
before fnally coming together and synthesizing our insights, which we
summarize below. These themes provide insight into the design of our
grammar, and animated visualization grammars more generally.

1Thompson & Liu also co-authored the original critical refections paper [35].

7.1 Grammar Design Process

7.1.1 Specifc Examples Motivate Grammar Design

When scoping their research projects, our interviewees prioritized mo-
tivating examples that they found personally compelling. For example,
the authors of Data Animator and Gemini were both motivated in part
by R2D3 [40]. As we discuss in the following subsections, the choosing
examples to support leads to design tradeoffs, e.g. between scene- and
segue-dominant abstractions (Sect. 7.2.1). Thus, a handful of com-
pelling in-the-wild examples can signifcantly infuence the grammars
developers build. Other examples that were cited across multiple in-
terviews included Gapminder [34], Periscopic’s Gun Deaths [31], and
animations in the New York Times (NYT) and the Guardian.

On the other hand, a lack of existing examples may also motivate
a grammar developer. For example, to gain more insight into the
popularity of animated visualization techniques, Kim scraped NYT
and Guardian articles from 2018 as well as YouTube videos from the
same year. He noticed that about 90% of the animated visualizations he
studied updated data, but kept the encoding fxed. R2D3 was a notable
exception. A similar imbalance can be found in the Data-Gifs example
gallery [39], where over half of the examples have fxed encodings.
Kim hypothesized that the imbalance is infuenced by the affordances of
existing tools, and decided to optimize Gemini for transitions between
changing encodings.

With Animated Vega-Lite, we were motivated by the large collection
of existing examples with static encodings, such as those in the Data-
Gifs example gallery. This category includes many prominent designs
like Gapminder and bar chart races. Rather than focus on developing
an expressive language of transitions between keyframes, we focused
on an expressive language of keyframe generation via selections. Our
abstractions facilitate the design of visualizations that must produce
many keyframes backed by a fxed encoding.

7.1.2 Natural Programming vs. Core Calculus Design

To make their systems easy to use for their target audiences, the au-
thors of Data Animator and Gemini aimed to develop grammars that
matched the existing mental models of animation designers. To that end,
both groups conducted interviews prompting experienced animators to
sketch interfaces or write pseudocode to recreate exemplar animated
visualizations [19, 45]. Fundamental abstractions emerged from these
formative studies. For instance, Gemini’s studies yielded the concepts
of synchronizing (‘at the same time’) and concatenating (‘then’, ‘af-
ter’) while Data Animator’s studies surfaced designers’ familiarity with
keyframes in Adobe After Effects. This design process is known as
natural programming, where a developer aims “for the language and
environment to work the way that nonprogrammers expect” [30].

In contrast, we set out to develop a small core calculus [6] of ab-
stractions for Animated Vega-Lite, which we outlined in Sect. 4. Our
design was motivated by the desire to explore whether interaction and
animation could be unifed. This unifcation would likely not have been
elicited by a target user. Because the key idea of our paper is to identify
a unifed abstraction, this difference in approach results in a design
tradeoff. As Kim explained, Animated Vega-Lite may seem natural to
a Vega-Lite user, but might present a steeper learning curve to someone
familiar with animation tools like Adobe AfterEffects, as Animated
Vega-Lite has no explicit concept of a keyframe.

Analyzing these processes via the Cognitive Dimensions of Nota-
tion [44], we fnd that iterating closely with end users in a natural
programming process yields a grammar that closely maps to common
user mental models. On the other hand, by distilling abstractions to
a reduced set of orthogonal concepts, a core calculus process better
emphasizes a consistent API that has low viscosity. Over-emphasizing
one process or the other may drag a language design too far to one side.
With PLIERS, Coblenz et al. [6] offer suggestions for how developers
may integrate and balance between these approaches. They recommend
a developer iterate between developing the theoretical foundations of
their language (core calculus) and the user-facing language (surface
language). Moreover, Coblenz et al. suggest adapting natural pro-
gramming by progressively prompting a user with incrementally more

information about a language’s proposed API. This additional scaffold-
ing can help scope how natural programming studies explore mental
models, and also lets a language developer gain insights even when the
core calculus signifcantly departs from a user’s familiar models. Inte-
grated design processes, like PLIERS, are likely to be valuable methods
for assessing future unifed grammars, because these systems must
balance signifcant conceptual unifcations with end-users’ ease-of-use.

7.2 Animation Abstractions and Design Considerations

7.2.1 Scene- vs. Segue-Dominant Abstractions

Several interviewees noted that Animated Vega-Lite’s abstractions ap-
pear complementary to their systems. For example, Kim noted his
conceptual distinction between Animated Vega-Lite and Gemini is

“[Animated Vega-Lite] animates the internal state within Vega-Lite, and
Gemini doesn’t care about the internal state. It just transforms be-
tween two static states of Vega-Lite.” Similarly, Thompson said “if
you compare [Animated Vega-Lite] directly to Data Animator, the two
of them together would be really nice. What one doesn’t have, the
other does really well.” For instance, he highlighted Animated Vega-
Lite’s ability to automatically generate keyframes from data (e.g., each
year keyframe in Gapminder) and Data Animator’s ability to pre-
cisely specify transitions between keyframes (such as staggering) as
complementary components of the two systems. He also appreciated
Animated Vega-Lite’s ability to create overlapping keyframes via layer-
ing, as in our bar chart race example (Fig. 4). Pedersen provides one
explanation for why our approach is complementary to the existing
systems we studied. In his useR! 2018 keynote, Pedersen introduced
the concepts of a scene and a segue animation [41]. A scene animation,
such as Gapminder, is one where the data is changing (such as countries
ranging over years), but the visual encoding is not. One can imagine
a scene playing within a fxed stage (i.e., a static visual encoding). In
contrast, a segue animation — such as a pie chart transitioning to a bar
chart — is one where the visual encoding is changing, but the data is
fxed. In practice, the line between a scene and segue is not always
clear. For example, transitioning from a strip plot to a box and whiskers
plot involves both a change to the data (computing aggregate quantities)
and a change to the visual encoding (converting to box-and-whiskers).

Using this scene and segue distinction, Animated Vega-Lite and
gganimate may be categorized as scene-dominant grammars. Both
systems aim to cover a large space of animated visualizations with
fxed encodings, such as Gapminder and bird migrations. Both systems
support an additional collection of visual encoding transformations. For
example, Animated Vega-Lite supports rescaling, panning, and zoom-
ing while gganimate supports transitions that can interpolate between
different shapes with the same underlying data. Though both Animated
Vega-Lite and gganimate are scene-dominant systems, Pedersen high-
lighted the expressiveness of Animated Vega-Lite’s selection model for
generating arbitrary keyframes from data (as shown with the Dunkin
example in Fig. 3) as a key conceptual distinction between the two.

On the other hand, Data Animator, Canis, and Gemini are segue-
dominant. These systems have focused primarily on connecting two
distinct keyframes that may have distinct visual encodings and data. To
construct a transition, Data Animator, Canis, and Gemini each construct
a mapping between two keyframes. This approach works well when the
data set is fxed, and there are only a few keyframes (as is typical when
showing a small handful of segues). But as identifed by Thompson
and Liu, to support an animation like Gapminder, these systems must
produce a keyframe for every year in the dataset.

As discussed in Sect. 6, Animated Vega-Lite inherits Vega-Lite’s
inability to represent complex runtime changes to visual encodings
and data transformations. We suspect that extending Vega-Lite with
these capabilities could enable segue animations in a future version of
Animated Vega-Lite. To support complex runtime changes, Vega-Lite’s
conditional encodings could be extended from just mark properties to
mark types and data transforms as in Ivy [25]. And our support for
enter and exit could be extended to operate not just on data, but also on
these more expressive encoding changes.

Fig. 6. Swimming World Records example from Data Animator [16].

7.2.2 Modeling Transitions Between Keyframes

Keyframes were the most salient animation abstraction in our inter-
views. We discussed keyframe concepts with every interviewee, and
they would often use keyframes to pose comparisons between different
systems’ abstractions. Every tool had to make decisions about (i) how
to generate keyframes and (ii) how to transition between them. More-
over, keyframes and transitions are useful abstractions for both scene-
and segue-dominant systems. In this subsection we surface an axis of
the keyframe design space: modeling transitions between keyframes.

Non-parametric transitions. The simplest kind of transition be-
tween keyframes is a non-parametric transition. Consider a linear
sequence of keyframes, where each keyframe describes an entire scene-
graph. Transitions between these keyframes are non-parametric in
that the same transition is applied to every data point. For example,
changing every bar to a point in 0.5 seconds (a segue animation) is a
non-parametric transition because the transition’s defnition is indepen-
dent of the mark’s encoded data — i.e. its duration is a constant value.
Similarly, animating countries in Gapminder (a scene animation) is
also a non-parametric transition because the transition applied to each
mark is identical (moving between two points in a fxed time interval).

Animated Vega-Lite supports non-parametric transitions via its timer,
easing, and interpolation abstractions, which implicitly specify a transi-
tion across keyframes. The other libraries also support non-parametric
transitions between pairs of keyframes, but only scene-dominant sys-
tems (gganimate and Animated Vega-Lite) support non-parametric
transitions across many keyframes. In scene-dominant animations,
the same transition specifcation can be reused across a sequence of
keyframes sharing a fxed encoding.

Parametric transitions. In contrast to non-parametric transitions,
parametric transitions involve transition defnitions that depend on the
backing data. A common use case for this model is to stagger transi-
tions — a common segue technique that applies a small delay to each
animated element to make them easier to track [12]. Because para-
metric transitions depend on data, individual marks can have different
timing properties during the same transition.

Segue-dominant systems Data Animator, Canis, and Gemini all
support parametric transitions. But, as Thompson identifed in his post-
interview, parametric transitions also increase the expressive gamut
of scene animations. For example, Fig. 6 shows “Swimming World
Records Throughout History” from the Data Animator example gallery.
This animated scatterplot shows replays of world record swimmers.
The input data includes swimmers and their fnal race times. When
Thompson tried to port this example to Animated Vega-Lite, he realized
he “had no clue how to do it. The two keyframes in this example are
very simple. All of the circles at one x position, and then all of the
circles like 200–400 pixels to the right. For us, you change the speed of
each individual shape based on a data property.” Animated Vega-Lite
could support this animation by allowing users to explicitly defne a
transition, with its speed parameterized by a data value.

To support parametric transitions, future versions of Animated Vega-
Lite could use Lu et al.’s concept of “dynamic functions” [24]. These
functions use mappings between data and transitions to specify rate-
of-change properties of transitions over time (e.g., encoding transition
speed instead of mark position). Adapting this segue-dominant concept
to Animated Vega-Lite could increase expressivity, though further
work is required to understand its composition with and implications
for static and interactive language constructs. For instance, segue
transition properties may more easily compose with existing static and

interactive Vega-Lite constructs if translated back into scene keyframes
as direct encodings instead of rates (e.g. instantiating transition speed
as additional position keyframes). However, this would trade off the
memory effciency of the segue representation.

Connecting transitions in series and parallel. Some of the most
compelling animated examples cannot be represented as a linear se-
quence of transitions, parametric or not. For instance, Periscopic’s Gun
Deaths animation [31], a visualization frequently cited by our inter-
viewees, cannot easily be represented even by parametric transitions.
When discussing this example, Thompson remarked: “This was one
that I had on my list of ‘oh it would be so cool if we could create this,’
and then I could just not fgure out a way of doing it. [...] How do you
have the circle appear and then drop, and then the line keeps going?
I have no clue how to do that [in Data Animator]”. Authoring this
animation is diffcult because there is no linear transition specifcation:
the animation splits in two when the circle drops and the line continues.
We are not certain that any of the grammars we have discussed in our
critical refections can easily express this animation, because it involves
both scene and segue animation.

Gemini’s composition rules offer a promising path for the transitions
necessary to support the Gun Deaths animation. Gemini’s concat
primitive allows a user to specify animations in series, while its sync
primitive allows a user to specify animation components that play in
parallel. Using these primitives, one could specify a sync that splits the
animation into the circle and the line, and then concat the many stages
of the Gun Deaths animation together. More generally, concat and sync
allow a user to model transitions as a series-parallel graph [48].

However, this abstraction alone is not enough. While Gemini has
a rich transition language, it cannot generate keyframes automatically
from data like Animated Vega-Lite. This generation is necessary for the
Gun Deaths animation to visualize individual points. Combining Gem-
ini’s segue abstractions with Animated Vega-Lite’s scene abstractions
is a promising future direction for expressive animation.

8 CONCLUSION AND FUTURE WORK

Animated Vega-Lite contributes a low viscosity, compositional, and
systematically enumerable grammar that unifes specifcation of static,
interactive, and animated visualizations. Within a single grammar, au-
thors can now easily switch between the three modalities during rapid
prototyping, and also compose them together to effectively communi-
cate and analyze faceted and time-varying data.

Our grammar takes a promising step in helping authors develop
visualizations that leverage the dynamic affordances of computational
media. During interviews, Pedersen described unifcation as the “holy
grail” of data visualization APIs: “A grammar of graphics that defnes
how things look, a grammar of animation that defnes how things
react, and a grammar of interaction that defnes how things interact.
Having all of that in one unifed theoretical framework would simply
be awesome.” Future work might more deeply explore the distinctions
and tradeoffs we surfaced between transition and keyframe models,
or study the implications of unifcation at the lower-level of reactive
programming semantics and data stream management.

Beyond language design, we hope that Animated Vega-Lite facili-
tates future work on interactive and animated visualization akin to the
role the original Vega-Lite has played. For instance, how might we
leverage Animated Vega-Lite’s ability to enumerate static, interactive,
and animated visualizations to study how these modalities facilitate
data analysis and communication — replicating and extending prior
work [33] more systematically? Similarly, how might study results be
codifed in the Draco knowledge base [29], or exposed in systems like
Voyager [49, 50] or Lux [23] to recommend animated visualizations
during exploratory data analysis? To support this future research, we
intend to contribute our work back to the open source Vega-Lite project.

ACKNOWLEDGMENTS

We thank our critical refections interlocutors and anonymous reviewers.
This work was supported by NSF grants #1942659 and #1900991 and
by the NSF’s SaTC Program. This material is based upon work sup-
ported by the National Science Foundation under Grant No. 1745302.

 REFERENCES

[1] Plotly Graphing Libraries, 2012. https://plotly.com/graphing-libraries/.
[2] F. A. Abukhodair, B. E. Riecke, H. I. Erhan, and C. D. Shaw. Does inter-

active animation control improve exploratory data analysis of animated
trend visualization? In Visualization and Data Analysis 2013, vol. 8654,
pp. 211–223. SPIE, Feb. 2013. doi: 10.1117/12.2001874

[3] M. Bostock, V. Ogievetsky, and J. Heer. D³ Data-Driven Documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
Dec. 2011. doi: 10.1109/TVCG.2011.185

[4] H.-J. Bucher and P. Schumacher. The relevance of attention for selecting
news content. An eye-tracking study on attention patterns in the reception
of print and online media. Communications, 31(3), Jan. 2006. doi: 10.
1515/COMMUN.2006.022

[5] F. Chevalier, P. Dragicevic, and S. Franconeri. The Not-so-Staggering
Effect of Staggered Animated Transitions on Visual Tracking. IEEE
Transactions on Visualization and Computer Graphics, 20(12):2241–2250,
Dec. 2014. Conference Name: IEEE Transactions on Visualization and
Computer Graphics. doi: 10.1109/TVCG.2014.2346424

[6] M. Coblenz, G. Kambhatla, P. Koronkevich, J. L. Wise, C. Barnaby, J. Sun-
shine, J. Aldrich, and B. A. Myers. PLIERS: A Process that Integrates
User-Centered Methods into Programming Language Design. ACM Trans-
actions on Computer-Human Interaction, 28(4):28:1–28:53, July 2021.
doi: 10.1145/3452379

[7] P. Dragicevic, A. Bezerianos, W. Javed, N. Elmqvist, and J.-D. Fekete.
Temporal distortion for animated transitions. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 2009–
2018. ACM, Vancouver BC Canada, May 2011. doi: 10.1145/1978942.
1979233

[8] C. Elliott and P. Hudak. Functional reactive animation. In Proceedings of
the second ACM SIGPLAN international conference on Functional pro-
gramming, ICFP ’97, pp. 263–273. Association for Computing Machinery,
New York, NY, USA, Aug. 1997. doi: 10.1145/258948.258973

[9] T. Ge, B. Lee, and Y. Wang. CAST: Authoring Data-Driven Chart Anima-
tions. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, CHI ’21, pp. 1–15. Association for Computing Ma-
chinery, New York, NY, USA, May 2021. doi: 10.1145/3411764.3445452

[10] T. Ge, Y. Zhao, B. Lee, D. Ren, B. Chen, and Y. Wang. Canis: A High-
Level Language for Data-Driven Chart Animations. Computer Graphics
Forum, 2020. Publisher: The Eurographics Association and John Wiley &
Sons Ltd. doi: 10.1111/cgf.14005

[11] E. Greussing, S. H. Kessler, and H. G. Boomgaarden. Learning From
Science News via Interactive and Animated Data Visualizations: An Inves-
tigation Combining Eye Tracking, Online Survey, and Cued Retrospective
Reporting. Science Communication, 42(6):803–828, Dec. 2020. Publisher:
SAGE Publications Inc. doi: 10.1177/1075547020962100

[12] J. Heer and G. Robertson. Animated Transitions in Statistical Data
Graphics. IEEE Transactions on Visualization and Computer Graphics,
13(6):1240–1247, Nov. 2007. doi: 10.1109/TVCG.2007.70539

[13] J. Hullman, P. Resnick, and E. Adar. Hypothetical Outcome Plots Out-
perform Error Bars and Violin Plots for Inferences about Reliability of
Variable Ordering. PLOS ONE, 10(11):e0142444, Nov. 2015. Publisher:
Public Library of Science. doi: 10.1371/journal.pone.0142444

[14] J. D. Hunter. Matplotlib: A 2D Graphics Environment. Computing in Sci-
ence Engineering, 9(3):90–95, May 2007. Conference Name: Computing
in Science Engineering. doi: 10.1109/MCSE.2007.55

[15] N. Irwin and K. Quealy. How Not to Be Misled by the Jobs Report. The
New York Times, May 2014.

[16] John Thompson. Swimming World Records throughout History, 2020.
[17] A. Kale, F. Nguyen, M. Kay, and J. Hullman. Hypothetical Outcome

Plots Help Untrained Observers Judge Trends in Ambiguous Data. IEEE
Transactions on Visualization and Computer Graphics, 25(1):892–902,
Jan. 2019. doi: 10.1109/TVCG.2018.2864909

[18] Y. Kim, M. Correll, and J. Heer. Designing Animated Transitions to
Convey Aggregate Operations. Computer Graphics Forum, 38(3):541–
551, 2019. doi: 10.1111/cgf.13709

[19] Y. Kim and J. Heer. Gemini: A Grammar and Recommender System
for Animated Transitions in Statistical Graphics. IEEE Transactions on
Visualization and Computer Graphics, 27(2):485–494, 2021. doi: 10.
1109/TVCG.2020.3030360

[20] Y. Kim and J. Heer. Geminiˆ2: Generating Keyframe-Oriented Animated
Transitions Between Statistical Graphics. In 2021 IEEE Visualization
Conference (VIS), pp. 201–205. IEEE, New Orleans, LA, USA, Oct. 2021.

doi: 10.1109/VIS49827.2021.9623291
[21] B. Kondo and C. Collins. DimpVis: Exploring Time-varying Information

Visualizations by Direct Manipulation. IEEE Transactions on Visualization
and Computer Graphics, 20(12):2003–2012, Dec. 2014. Conference
Name: IEEE Transactions on Visualization and Computer Graphics. doi:
10.1109/TVCG.2014.2346250

[22] F. A. La Sorte, D. Fink, W. M. Hochachka, and S. Kelling. Convergence
of broad-scale migration strategies in terrestrial birds. Proceedings of the
Royal Society B: Biological Sciences, 283(1823):20152588, Jan. 2016.
Publisher: Royal Society. doi: 10.1098/rspb.2015.2588

[23] D. J.-L. Lee, D. Tang, K. Agarwal, T. Boonmark, C. Chen, J. Kang,
U. Mukhopadhyay, J. Song, M. Yong, M. A. Hearst, and A. G.
Parameswaran. Lux: always-on visualization recommendations for ex-
ploratory dataframe workfows. Proceedings of the VLDB Endowment,
15(3):727–738, Nov. 2021. doi: 10.14778/3494124.3494151

[24] M. Lu, N. Fish, S. Wang, J. Lanir, D. Cohen-Or, and H. Huang. Enhancing
Static Charts With Data-Driven Animations. IEEE Transactions on Visual-
ization and Computer Graphics, 28(7):2628–2640, July 2022. Conference
Name: IEEE Transactions on Visualization and Computer Graphics. doi:
10.1109/TVCG.2020.3037300

[25] A. M. McNutt and R. Chugh. Integrated Visualization Editing via Parame-
terized Declarative Templates. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, pp. 1–14. ACM, Yokohama
Japan, May 2021. doi: 10.1145/3411764.3445356

[26] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,
A. Bromfeld, and S. Krishnamurthi. Flapjax: a programming language for
Ajax applications. In Proceedings of the 24th ACM SIGPLAN conference
on Object oriented programming systems languages and applications,
OOPSLA ’09, pp. 1–20. Association for Computing Machinery, New
York, NY, USA, Oct. 2009. doi: 10.1145/1640089.1640091

[27] Mike Bostock. d3-ease, 2015. https://github.com/d3/d3-ease.
[28] Mike Bostock. Bar Chart Race, Explained, 2019.

https://observablehq.com/@d3/bar-chart-race-explained.
[29] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and

J. Heer. Formalizing Visualization Design Knowledge as Constraints:
Actionable and Extensible Models in Draco. IEEE Transactions on Visu-
alization and Computer Graphics, 25(1):438–448, Jan. 2019. Conference
Name: IEEE Transactions on Visualization and Computer Graphics. doi:
10.1109/TVCG.2018.2865240

[30] B. A. Myers, J. F. Pane, and A. J. Ko. Natural programming languages
and environments. Communications of the ACM, 47(9):47–52, Sept. 2004.
doi: 10.1145/1015864.1015888

[31] Periscopic. United States gun death data visualization, 2013.
[32] D. Ren, B. Lee, M. Brehmer, and N. H. Riche. Refecting on the Evaluation

of Visualization Authoring Systems : Position Paper. In 2018 IEEE
Evaluation and Beyond - Methodological Approaches for Visualization
(BELIV), pp. 86–92, Oct. 2018. doi: 10.1109/BELIV.2018.8634297

[33] G. Robertson, R. Fernandez, D. Fisher, B. Lee, and J. Stasko. Effectiveness
of Animation in Trend Visualization. IEEE Transactions on Visualization
and Computer Graphics, 14(6):1325–1332, Nov. 2008. doi: 10.1109/
TVCG.2008.125

[34] H. Rosling. The best stats you’ve ever seen, 2006.
https://www.ted.com/talks/hans rosling the best stats you ve ever seen.

[35] A. Satyanarayan, B. Lee, D. Ren, J. Heer, J. Stasko, J. Thompson,
M. Brehmer, and Z. Liu. Critical Refections on Visualization Authoring
Systems. IEEE Transactions on Visualization and Computer Graphics, pp.
1–1, 2019. doi: 10.1109/TVCG.2019.2934281

[36] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite:
A Grammar of Interactive Graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350, Jan. 2017. Conference Name:
IEEE Transactions on Visualization and Computer Graphics. doi: 10.
1109/TVCG.2016.2599030

[37] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive Vega: A
Streaming Datafow Architecture for Declarative Interactive Visualization.
IEEE Transactions on Visualization and Computer Graphics, 22(1):659–
668, Jan. 2016. Conference Name: IEEE Transactions on Visualization
and Computer Graphics. doi: 10.1109/TVCG.2015.2467091

[38] A. Satyanarayan, K. Wongsuphasawat, and J. Heer. Declarative interaction
design for data visualization. In Proceedings of the 27th annual ACM
symposium on User interface software and technology, UIST ’14, pp.
669–678. Association for Computing Machinery, New York, NY, USA,
Oct. 2014. doi: 10.1145/2642918.2647360

[39] X. Shu, A. Wu, J. Tang, B. Bach, Y. Wu, and H. Qu. What Makes

https://www.ted.com/talks/hans
https://observablehq.com/@d3/bar-chart-race-explained
https://github.com/d3/d3-ease
https://10.1109/MCSE.2007.55
https://plotly.com/graphing-libraries

a Data-GIF Understandable? IEEE Transactions on Visualization and
Computer Graphics, 27(2):1492–1502, Feb. 2021. doi: 10.1109/TVCG.
2020.3030396

[40] Stephanie Yee and Tony Chu. A visual introduction to machine learning,
Part II, 2015. http://www.r2d3.us/visual-intro-to-machine-learning-part-2/.

[41] Thomas Lin Pedersen. The Grammar of Animation, July 2018.
https://www.youtube.com/watch?v=21ZWDrTukEs.

[42] Thomas Lin Pedersen. gganimate has transitioned to a state of release,
2019. https://www.data-imaginist.com/2019/gganimate-has-transitioned-
to-a-state-of-release/.

[43] Thomas Lin Pedersen and David Robinson. A Grammar of Animated
Graphics, 2019. https://gganimate.com/.

[44] Thomas RG Green. Cognitive dimensions of notations. In A. Sutcliffe
and L. Macaulay, eds., People and Computers V, pp. 443–460. Cambridge
University Press, Cambridge, UK, 1989.

[45] J. Thompson, Z. Liu, W. Li, and J. Stasko. Understanding the Design
Space and Authoring Paradigms for Animated Data Graphics. Computer
Graphics Forum, 39(3):207–218, 2020. doi: 10.1111/cgf.13974

[46] J. R. Thompson, Z. Liu, and J. Stasko. Data Animator: Authoring Expres-
sive Animated Data Graphics. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, CHI ’21, pp. 1–18. Association
for Computing Machinery, New York, NY, USA, May 2021. doi: 10.
1145/3411764.3445747

[47] B. Tversky, J. B. Morrison, and M. Betrancourt. Animation: can it
facilitate? International Journal of Human-Computer Studies, 57(4):247–
262, Oct. 2002. doi: 10.1006/ijhc.2002.1017

[48] Wikipedia contributors. Series–parallel graph — Wikipedia, The Free
Encyclopedia, 2022.

[49] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and
J. Heer. Voyager: Exploratory Analysis via Faceted Browsing of Visualiza-
tion Recommendations. IEEE Transactions on Visualization and Computer
Graphics, 22(1):649–658, Jan. 2016. Conference Name: IEEE Transac-
tions on Visualization and Computer Graphics. doi: 10.1109/TVCG.2015.
2467191

[50] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. Mackinlay, B. Howe, and J. Heer. Voyager 2: Augmenting Visual
Analysis with Partial View Specifcations. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, CHI ’17, pp.
2648–2659. Association for Computing Machinery, New York, NY, USA,
May 2017. doi: 10.1145/3025453.3025768

[51] J. S. Yi, Y. a. Kang, J. Stasko, and J. Jacko. Toward a Deeper Under-
standing of the Role of Interaction in Information Visualization. IEEE
Transactions on Visualization and Computer Graphics, 13(6):1224–1231,
Nov. 2007. doi: 10.1109/TVCG.2007.70515

[52] J. Zong, D. Barnwal, R. Neogy, and A. Satyanarayan. Lyra 2: Designing
Interactive Visualizations by Demonstration. IEEE Transactions on Vi-
sualization and Computer Graphics, 27(2):304–314, Feb. 2021. doi: 10.
1109/TVCG.2020.3030367

https://gganimate.com
https://www.data-imaginist.com/2019/gganimate-has-transitioned
https://www.youtube.com/watch?v=21ZWDrTukEs
http://www.r2d3.us/visual-intro-to-machine-learning-part-2

	Introduction
	Related Work
	Animation in Information Visualization
	Authoring Interaction and Animation

	Motivation: Unifying Interaction and Animation
	Conceptually Bridging Interaction and Animation
	Low-Viscous Authoring: An Example Usage Scenario

	A Grammar of Animation in Vega-Lite
	Time Encoding Channel
	Key Field
	Time Scale
	Re-scale

	Selections with a Timer Event Stream
	Applying Selections
	Predicate
	Input Element Binding
	Pausing
	Global Easing

	Implementation
	Evaluation: Example Gallery
	Evaluation: Critical Reflection
	Grammar Design Process
	Specific Examples Motivate Grammar Design
	Natural Programming vs. Core Calculus Design

	Animation Abstractions and Design Considerations
	Scene- vs. Segue-Dominant Abstractions
	Modeling Transitions Between Keyframes

	Conclusion and Future Work

