
 

  

  
 

 
  

Animated Vega-Lite: Unifying Animation with a 
Grammar of Interactive Graphics 

Jonathan Zong*, Josh Pollock*, Dylan Wootton, Arvind Satyanarayan 

Abstract— We present Animated Vega-Lite, a set of extensions to Vega-Lite that model animated visualizations as time-varying data 
queries. In contrast to alternate approaches for specifying animated visualizations, which prize a highly expressive design space, 
Animated Vega-Lite prioritizes unifying animation with the language’s existing abstractions for static and interactive visualizations to 
enable authors to smoothly move between or combine these modalities. Thus, to compose animation with static visualizations, we 
represent time as an encoding channel. Time encodings map a data feld to animation keyframes, providing a lightweight specifcation 
for animations without interaction. To compose animation and interaction, we also represent time as an event stream; Vega-Lite 
selections, which provide dynamic data queries, are now driven not only by input events but by timer ticks as well. We evaluate the 
expressiveness of our approach through a gallery of diverse examples that demonstrate coverage over taxonomies of both interaction 
and animation. We also critically refect on the conceptual affordances and limitations of our contribution by interviewing fve expert 
developers of existing animation grammars. These refections highlight the key motivating role of in-the-wild examples, and identify three 
central tradeoffs: the language design process, the types of animated transitions supported, and how the systems model keyframes. 

Index Terms—Information visualization, Animation, Interaction, Toolkits, Systems, Declarative Specifcation 

1 INTRODUCTION 

Rapid prototyping is critical to the visualization authoring process. 
When making an explanatory graphic, rapid prototyping allows a vi-
sualization author to evaluate candidate designs before committing to 
refning one in detail. For exploratory data analysis, rapid prototyping is 
equally key as visualization is just one part of a broader workfow, with 
analysts focused on producing and analyzing a chart to yield insight 
or seed further analysis. However, consider the friction of visualizing 
faceted data: an author might choose between depicting facets as a 
small multiples display, on-demand via interaction (e.g., dynamic query 
widgets), or played sequentially via animation. These designs make 
different trade-offs between time and space and, as a result, research 
results suggest they afford readers different levels of clarity, time com-
mitment, and visual interest [33]. Despite these differences, the designs 
express a shared goal — to visualize different groupings of the data — 
and a visualization author might reasonably expect to be able to easily 
move between the three to make the most appropriate choice. 

Unfortunately, existing visualization toolkits can present a highly 
viscous [44] specifcation process when navigating this time-space 
trade-off. One class of toolkits supports either interaction or ani-
mation, but not both. Such systems include Vega [38] and Vega-
Lite [36] — which offer interaction primitives in the form of signals 
and selections but do not provide abstractions for animation — as well 
as gganimate [43], Data Animator [46], Canis / CAST [9, 10], and 
Gemini/Gemini2 [19,20] — which express animation in terms of transi-
tions between discrete visualization states known as keyframes but do 
not provide treatment for interaction. As a result, these systems force vi-
sualization authors to prematurely commit [44] to either an interaction-
or animation-friendly abstraction when choosing their prototyping tool, 
and thus limit authors’ ability to explore alternative designs. A second 
class of toolkits (including D3 [3] and Plotly [1]) support both modali-
ties but do so via largely distinct abstractions (namely, transitions or 
frames for animation, and event handlers or a typology of techniques 
for interaction). Thus, an author must often either restructure or rewrite 
their specifcations to consider interaction and animation in parallel. 

In this paper, we present Animated Vega-Lite: extensions to Vega-
Lite to support data-driven animation. Its design is motivated by the 
key insight that interaction and animation are parallel concepts (Sect. 3). 
Whereas interactions transform data (e.g. fltering) and update visual 
properties (e.g. re-coloring marks) in response to user input, animations 
do the same in response to a timer. From this perspective, interactive 
and animated visualization techniques occupy a spectrum of dynamic, 
event-driven behaviors. Thus, with Animated Vega-Lite, animated 
visualizations (like their interactive counterparts) are modeled as time-
varying data queries — an approach that allows us to provide a unifed 
set of abstractions for static, interactive, and animated visualizations. 

Animated Vega-Lite offers two abstractions of time that allow ani-
mations to compose with Vega-Lite’s existing grammars of static and 
interactive visualizations (Sect. 4). From the perspective of interaction, 
time is an event stream: a source of events analogous to clicks and 
keypresses produced by a user. These events drive Vega-Lite selec-
tions, which apply dynamic data queries to visual encodings. Thus, by 
modeling time as an event stream, users can seamlessly specify and 
move between interactive and animated behavior in the same specifca-
tion. From the perspective of Vega-Lite’s grammar of graphics, time 
is an encoding channel. Just as x and y encodings map data values to 
spatial positions measured in pixels, a time encoding maps data values 
to temporal positions measured in elapsed milliseconds. Compared to 
the event stream abstraction, the encoding channel abstraction is lighter-
weight, but less expressive. This allows a visualization author to get 
started quickly with an animated chart and to move easily between an 
animated and a faceted visualization by switching a time channel for a 
row or column one. And, for added customizability, users can always 
turn a time-as-encoding specifcation into a time-as-event-stream one. 

We implement a prototype compiler that synthesizes a low-level 
Vega specifcation with shared reactive logic for interaction and anima-
tion (Sect. 5). Following best practices [32], we assess our contribution 
with multiple evaluation methods. Through a diverse example gallery 
(Sect. 6), we demonstrate that Animated Vega-Lite covers much of 
Yi et al.’s interaction taxonomy [51] and Heer & Robertson’s anima-
tion taxonomy [12] while preserving Vega-Lite’s low viscosity and 
systematic generativity. We also interview fve expert developers of 
four existing animated visualization grammars [9, 10, 19, 20, 42, 46] 
to critically refect [35] on the tradeoffs, conceptual affordances, and 
limitations of our system (Sect. 7). We discuss the important role ex-
ample visualizations play in grammar design and analyze three areas of 
tradeoffs: the language design process, support for animations within 
vs. between encodings, and models of animation keyframes. 
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2 RELATED WORK 

Our contribution is motivated by perceptual work on the value of com-
bining interaction and animation, and is informed by the design of 
existing toolkits for authoring animated data visualizations. 

2.1 Animation in Information Visualization 

In a classic 2002 paper, Tversky et al. [47] question the effcacy of 
animated graphics. In reviewing nearly 100 studies comparing static 
and animated graphics, the authors were unable to fnd convincing 
cases where animated charts were strictly superior to static ones. Vi-
sualization researchers have since contributed a body of studies that 
have identifed reasons to be both optimistic and cautious about the 
value of animation in visualization. For instance, several studies have 
demonstrated advantages when animating chart transitions [5, 7, 12, 18] 
or directly animating data values to convey uncertainty [13, 17]. How-
ever, these studies have also echoed concerns from Tversky et al. that 
animations are often too complex or fast to be perceived accurately — 
for instance, Robertson et al. found that animated trend visualizations 
are outperformed by static small multiples displays [33]. 

To ameliorate these limitations of animation, Tversky et al. suggest 
composing animation with interactivity, particularly through techniques 
that allow reinspection or focusing on subsets of depicted data. Robert-
son et al. began to probe this question by testing an interactive alter-
native alongside the static and animated stimuli — here, clicking an 
individual mark adds an overlaid line that depicts its trajectory over time. 
They fnd that although participants are no more accurate under this 
interactive condition, they perform faster when using this visualization 
for data analysis [33]. In follow-up work, Abukhodair et al. [2] further 
contextualize Robertson’s results, fnding that interactive animation 
can be effective and signifcantly more accurate than animation alone 
when users want to drill down into the data or have specifc questions 
about points of interest. More recent results are similarly promising: in 
eye-tracking studies, Greussing et al. [11] fnd that interactive animated 
graphics not only received more attention than static or interactive-only 
equivalents, but these charts also produced higher knowledge acqui-
sition in participants. The authors believed that the enhanced affects 
on memory and performance resulted from an increase in engagement 
and attention on the visualization, which is in line with additional re-
search on attention [4]. Our work is motivated by these results. By 
providing a unifed abstraction of interaction and animation, Animated 
Vega-Lite allows analysts to rapidly switch between the two modalities, 
or compose them together to best suit their needs. Moreover, as our 
abstractions preserve Vega-Lite’s generative properties, we believe our 
contribution lowers the threshold for conducting future such studies by 
allowing researchers to more systematically isolate, vary, and compare 
individual interaction and animation techniques. 

2.2 Authoring Interaction and Animation 

In Sect. 3.1, we describe the conceptual similarities between Animated 
Vega-Lite and Functional Reactive Programming (FRP). Moreover, in 
Sect. 7 we conduct a detailed comparison between Animated Vega-Lite 
and gganimate [42], Data Animator [46], Gemini/Gemini2 [19, 20], 
and Canis/CAST [9, 10]. Here, we instead survey other systems for 
authoring interaction and animation that have informed our approach. 

Visualization toolkits such as D3 [3], Plotly [1], and Matplotlib [14] 
offer a number of facilities for authoring and composing interaction and 
animation including typologies of techniques (e.g., brushing, hovering, 
and animation frames) through to event callbacks and transition func-
tions. Technique typologies can help foster a rapid authoring process, 
allowing designers to easily instantiate common techniques, but also 
present a sharp abstraction cliff [44]. If designers wish to produce 
more custom interaction or animation techniques, they must turn to 
an entirely different notation: authoring low-level, imperative event 
callbacks or transition functions. This abstraction cliff also increases 
the viscosity of the authoring process [44]. For instance, to switch 
between the static, interactive, and animated displays of faceted data 
described in the introduction using D3 would involve restructuring the 
specifcation code in non-trivial ways — a problem that is exacerbated 

Example Interaction intent [51] Animation type [12] 
technique 

Conditional Select — 
encoding 
Panning Explore View transformation 
Zooming Abstract / Elaborate View transformation 
Axis re-scaling Reconfgure Substrate 

transformation 
Axis sorting Reconfgure Ordering 
Filtering Filter Filtering 
Enter/exit Explore Timestep 
Multi-view Connect — 
Changing Encode Visualization change, 
encodings Data schema change 

Table 1. Techniques common to interaction and animation taxonomies. 

if HTML templates are used to generate the SVG rather than the d3-
selection, as is increasingly the case when working with modern 
frontend frameworks such as Svelte, Vue, or React. 

In contrast, Animated Vega-Lite, like its predecessor, prioritizes 
concise high-level declarative specifcation. As Sect. 3 describes, users 
can make atomic edits (i.e., changing individual keywords, or adding 
a localized handful of lines of specifcation code) to rapidly explore 
designs across the three modalities. The tradeoff, however, is one of 
expressiveness. Animated Vega-Lite users are limited to composing 
language primitives; while these primitives are suffcient to broadly 
cover interaction and animation taxonomies (Sect. 6), their expressive 
range will necessarily be smaller than their lower-level counterparts. 

3 MOTIVATION: UNIFYING INTERACTION AND ANIMATION 

In this section, we discuss similarities between interaction and anima-
tion that we observe. These similarities drive our design decisions, 
allowing us to extend Vega-Lite with only minimal additional language 
primitives, and yielding a low-viscosity grammar that makes it easy to 
switch between static, interactive and animated modalities. 

3.1 Conceptually Bridging Interaction and Animation 

We observe that interaction and animation share conceptual similarities 
at both low and high levels of abstraction. At a low level of abstraction, 
Functional Reactive Programming (FRP) languages like Flapjax [26] 
and Fran [8], as well as FRP-based visualization toolkits like Vega [37], 
have shown that interaction and animation can both be modeled as 
event streams. The Vega example gallery demonstrates how this uni-
fed abstraction offers consistency, with similar semantics expressed 
through similar syntactic forms [44]. Namely, the gallery recreates the 
Gapminder global health scatter plot, originally an animated visualiza-
tion produced by Hans Rosling [34], but as an interactive visualization 
driven by the DimpVis direct manipulation technique [21]. We ob-
serve that, although it would be tedious to do manually, a user could 
convert this interactive visualization back to the original animated one 
by replacing signals near the top of the datafow, which react to in-
coming drag events, with signals that respond to timer events instead: 
where these signals map the drag event’s position to a year value, the 
timer signals would simply emit the next year value on each event. 
The rest of the downstream reactive logic would remain unchanged. 
However, as the Vega authors found [38], additional language design is 
necessary to ensure FRP primitives compose together with grammar of 
graphics constructs and to facilitate higher-level authoring of dynamic 
visualizations. 

To analyze conceptual similarities between interaction and anima-
tion at a higher-level of abstraction, we look to Yi et al. [51] and Heer 
and Robertson [12] that taxonomize techniques for each modality re-
spectively. These taxonomies are defned by drawing on example visu-
alizations, and although they have been defned separately, share many 
motivating techniques (Table 1). For example, Heer and Robertson cite 
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Fig. 1. An analyst’s workfow with Animated Vega-lite. A) Static visualization of bird migrations. B) Adding interaction to hover over a migration path 
and view a tooltip. C) Switching from static lines to animated circle marks. D) Adding animated path trails for the previous 5 days. E) Adding an 
interactive slider to scrub through the animation. 

panning as an example of view transformation because it changes the 
reader’s viewpoint while leaving data schemas and encodings intact. 
Yi et al. also consider panning, categorizing it as an example of an 
explore interaction, because it involves showing a new subset of data as 
points shift in and out of the viewport. Zooming, another example of 
view transformation, is also described as an abstract/elaborate inter-
action because it can be used to show data at different levels of detail. 
As we show in Table 1, we observe substantial overlap in techniques 
referenced by both taxonomies. Though select interactions lack an 
explicitly defned corresponding animation type, conditional encoding 
is a commonly used technique in animated visualizations. Similarly, 
though there is no corresponding category in Heer and Robertson’s tax-
onomy for connect interactions, animations applied to shared backing 
data across multiple views can fulfll the same purpose of highlighting 
relationships between related points. 

3.2 Low-Viscous Authoring: An Example Usage Scenario 

A unifed abstraction for static, interaction and animation also pro-
motes a low-viscous authoring process (i.e., being able to easily switch 
between modalities, or compose them together). To illustrate the affor-
dances of this approach, we present an example walkthrough following 
Imani, an orthonologist, as she plans a new birdwatching expedition. 
Imani has a bird migration dataset comprising the average latitudes and 
longitudes for a variety of bird species, for every day of the year [22]. 
To ensure a productive trip, Imani wants uncover how migration pat-
terns correspond to different times of the year and geographic regions. 

Static (Fig. 1A). Imani begins her analysis with a static visualization 
to get an overview of the dataset. She plots a map, and visualizes 
migration paths using line marks: each bird species is depicted as a 
single, uniquely-colored line, connecting the individual daily points 
along their given latitudes and longitudes. However, Imani is quickly 
overwhelmed as the size of the dataset produces too many overlapping 
lines for this static view to be useful, even after adjusting mark opacity. 

Interactive (Fig. 1B). To pick out individual bird species, and begin 
a cycle of generating and answering hypotheses, Imani thinks to layer 
some interactivity on the static display. She adds a point selection 
named highlight and driven by mouseover events. By default this 
selection is populated with the data tuple underneath the mouse cursor, 
and additional tuples are added or toggled when the shift modifer 
key is pressed. Imani writes a conditional encoding to interactively 
adjust mark appearance: selected paths are drawn at full opacity and 
in a larger size, while unselected paths are drawn with lower opacity 
and at a smaller size. Thus, as Imani moves her mouse across the 
visualization, she is able to better trace individual paths, and she adds a 
tooltip encoding channel to surface and note species’ names. 

This interactive view gives Imani a better sense of migration paths. 

But, to be able to plan her expedition, she needs to understand where dif-
ferent bird species may be on any given day. Until this point, Imani has 
used vanilla Vega-Lite abstractions. In the subsequent steps, we show 
how features of Animated Vega-Lite help Imani deepen her analysis. 

Time Encoding Channel (Fig. 1C). Imani swaps to a circle mark 
and maps day (a feld that encodes the day of the year from 0 to 365) to 
the new time encoding channel. With these two edits, each bird species 
is drawn as a circle indicating its location on a particular day, and the 
visualization animates through day values. Imani can now follow the 
path bird species travel over the course of a year. 

Time Event Stream (Fig. 1D). Imani, however, is keenly aware that 
her dataset only contains average values for each species. Birds tend to 
appear at a given location within a small window of time around the 
average day in the dataset. Thus, to ensure she does not make an erro-
neous conclusion, Imani wants to visualize this variability as a path trail. 
To do so, she adds a new point selection named spread window, 
which contains a custom predicate — a function that identifes which 
data tuples should be considered as falling within the selection. In this 
case, Imani writes a predicate to select data from the fve days previous 
to the current day. She does this by writing inequality expressions refer-
encing the reserved name anim value, which stores the current data 
value of the animation. In contrast to the existing highlight point 
selection, which is updated on user input events, spread window 
is instead populated and re-populated on every timer tick. She uses 
spread window to dynamically flter the circle marks, ensuring only 
data values that lie within the selection are displayed and animated. To 
visually distinguish the current day’s points, she also elaborates the 
time encoding into an explicit selection called current frame and 
uses it to drive a conditional opacity encoding. She renders current 
points at full opacity while rendering the trailing points at less opacity. 

Composing Interaction + Animation (Fig. 1E). While watching 
this path-trail animation, Imani notices that a cluster of birds appear 
to visit Pensacola, Florida during late March and notes this region as 
a potential location for her expedition. However, before she lets her 
colleagues know, she wants to investigate the migration patterns of the 
birds that come through the area — if these species tend to co-locate in 
other parts of the world, there is less of a reason for birders to travel 
to Pensacola specifcally. To answer this question, Imani needs fner 
control over the animation state. She binds the current frame 
selection to an interactive range slider, and can now toggle between 
animating and interactively sliding the day feld. She scrubs the slider 
to the day when the birds pass through Pensacola, and to track these 
species in the visualization, she modifes the interactive highlight 
selection to fre on click instead of hover. Imani multi-selects (i.e., 
clicking with the shift key pressed) the birds that pass through the 
area, and then scrubs to a different day. Here Imani can see that these 
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Fig. 2. Animated Vega-Lite specifcation of the infuential Gapminder animation [34]. (A) A minimal specifcation using only time encoding. (B) The 
same specifcation elaborated to show default encoding properties and a default selection. (C) Selected keyframes from the resulting animation. 

birds come from 5 unique nesting sites across the mid-west US to 
eastern Canada. This is promising as it indicates that these species 
uniquely overlap in Pensacola, making it a prime viewing destination. 

Summary. With Animated Vega-Lite, Imani was able to move be-
tween static, interactive, and animated visualizations through a series 
of atomic edits or otherwise localized changes rather than larger-scale 
refactoring or restructuring of code. Moreover, we have extended Vega-
Lite’s high-level affordances to animation: Imani was able to express an-
imation as data selections and transformations, rather than manipulating 
keyframes or specifying transition states; and, the Animated Vega-Lite 
compiler synthesized appropriate defaults and underlying machinery 
for the animation to unfold correctly. Finally, as Animated Vega-Lite 
offers a unifed abstraction, Imani was able to reuse Vega-Lite’s existing 
primitives to author mixed interactive-animated visualizations as well 
as custom techniques without the need for special-purpose functions — 
e.g., combining animations with on-click highlighting and composing 
selections with a window data transform to draw trailing marks, rather 
than using a shadow function as with gganimate. 

4 A GRAMMAR OF ANIMATION IN VEGA-LITE 

In Animated Vega-Lite, users specify animation using a time encod-
ing channel and timer-driven selections. Time encodings provide a 
light-weight way to convert faceted static visualizations into animations. 
To further customize the animation design or easily add interaction, 
users can specify animations as selections instead. Selections express 
dynamic data queries, and are now populated either by input events (as 
with vanilla Vega-Lite) or, now, via timer ticks. Defned selections can 
then be used to drive data transformations, scale functions, or condi-
tionally encode visual properties. Our animation model expressively 
extends existing abstractions for static and interactive visualizations 
while minimally increasing language surface area and complexity. 

4.1 Time Encoding Channel 

In Vega-Lite, encodings determine how data values map to the visual 
properties of a mark (also known as channels). Vega-Lite includes 
two channels for spatial position, x and y. Animated Vega-Lite adds 
a new channel for temporal position, called time. A user specifes a 
time encoding by providing a field property, which is a string of the 
name of a data column. The feld can be any measure type with a sort 
order (quantitative, temporal, ordinal), and does not necessarily need 
to represent a timestamp. The system uses distinct values from this 
column to group data rows into temporal facets called keyframes. Over 
the duration of the animation, each keyframe is shown sequentially. 

Fig. 2A shows the Animated Vega-Lite specifcation for Rosling’s 
Gapminder animation [34]. The time encoding, highlighted in yellow, 
maps the dataset’s year feld to the time encoding channel. The system 
uses the distinct values of year to group rows into keyframes. In other 
words, there is one keyframe per possible value of year in the dataset 
(i.e. 1955, 1960, 1965, ..., 2005) (Fig. 2C). 

4.1.1 Key Field 

In-betweening, more commonly called tweening, is a standard anima-
tion technique that involves generating additional frames to smoothly 
transition between two keyframes. By adding tweening, the animation 
will give the visual impression of continuous change over time even 
when data represents discrete measurements. In data visualization, 
tweening takes on additional meaning as it requires generating and 
interpolating between values that are not present in the dataset. In 
Animated Vega-Lite, to specify tweening between keyframes, the user 
specifes a key property in the time encoding channel, which refer-
ences a feld name. This key feld is used to group rows together across 
keyframes. For two given successive keyframes, rows that share the 
same value for the key feld are treated as the start and end states for a 
single mark instance. Key values should be unique within a keyframe 
to prevent ambiguity; otherwise, a single mark instance might have 
multiple start or end states, resulting in undefned behavior. If the user 
does not specify a key feld, the Animated Vega-Lite compiler attempts 
to infer a sensible default based on the mark type and other specifed 
categorical channels such as color or detail — an approach that 
follows Vega-Lite’s existing inferences. 

In the Gapminder example, Fig. 2B shows the Gapminder spec from 
Fig. 2A with default values specifed explicitly. Here, country is used 
as the default key feld as it is also encoded on the color encoding 
channel. Consider the successive keyframes with year values 1955 
and 1960. For each year, each scatterplot point is identifed by a unique 
country value. Therefore, to tween from 1955 to 1960, the system 
interpolates the two rows for each country to produce the corresponding 
in-between point at each animation frame. 

4.1.2 Time Scale 

An encoding uses a scale function to map from the data domain to a 
visual range. For spatial encoding channels, this range is measured 
in pixels relative to the bounding box of the rendered visualization. 
For the time encoding channel, we measure the range in milliseconds 
elapsed from the start of the animation. Users specify the timing of 
the animation using a time scale (for example, by specifying either an 
overall animation duration or the amount of time between keyframes as 
a step). As with existing encoding channels, if a scale is not specifed 
by the user, Vega-Lite infers default scale properties. By default, scales 
for the time encoding channel use the unique values of the backing feld 
as the scale domain, and create a default step range with 500ms per 
domain value. For example, the Gapminder domain is a list of every 
ffth year between 1955 and 2005, inclusive. The default range maps 
1955 to 0ms, 1960 to 500ms, 1965 to 1000ms, and so on. A user can 
override this default range to slow down or speed up the animation. 

Though the default domain is suffcient to express most common 
animations, a user may want to override the domain. Supplying a 
custom domain is useful for specifying non-keyframe-based animations 
that require direct reference to in-between values, or require animating 
through values that are missing from the dataset. For example, Fig. 3 
shows an example of such a use case. The animation should advance 



 

  

       

 

 
  
  

 

   
    

 

 
 

 

     

 

Fig. 3. Animation of Dunkin’ Donuts stores’ opening and closing times. 
With a custom domain and predicate, the animation advances through 24 
hours at a constant rate and conditionally colors each store if the current 
time is between the store’s open and close times. 

through 24-hour time span at a constant rate. However, the dataset does 
not contain a feld that has values that are evenly spaced in the desired 
domain. So, with a default scale domain, the animation would appear 
to jump between time stamps rather than move through them smoothly. 
To achieve the desired behavior, the user instead specifes a custom 
domain representing the continuous interval between 00:00 and 23:30. 

4.1.3 Re-scale 
By default, the visualization’s data rectangle (or viewport) is fxed 
to the initial extents of the x- and y-scales calculated from the full 
dataset. However, for keyframe animations, only a subset of data is 
shown at any given time. If a user wants to re-calculate the viewport 
bounds based on only the data included in the current keyframe, rather 
than the original full dataset, they can set a fag in the time encoding 
called rescale. When rescale is true, the viewport’s bounds are 
recomputed at each step of the animation. We refer to this concept as 
re-scaling because re-calcuating the viewport bounds involves updating 
the domains of the x and y scales at each keyframe. 

Fig. 4 demonstrates the use of rescale. Rescale is enabled in 
Fig. 4A, where the viewport updates according to the current selection. 
The visualization remains tightly zoomed on the currently displayed 
bars, with the longest bar always scaled to nearly the full width of the 
viewport. In contrast, Fig. 4B has rescaling disabled. The viewport is 
initially calculated with the full dataset and remains fxed. This would 
be appropriate for Gapminder, because we want to show the countries 
moving along a fxed scale. However, it is less helpful for bar chart 
race. Instead of enabling positional comparisons to a fxed scale, the 
animation prioritizes making the ordering of the top-ranked bars salient. 

4.2 Selections with a Timer Event Stream 

Selections are subsets of data points that are populated when updates 
occur in an event stream. In Vega-Lite’s interactive grammar, selections 
are defned using streams of user input events (e.g., clicks, mouse move-
ments, or keyboard presses). The system uses the event’s properties to 
query a set of data points. The selected data can then be applied to up-
date downstream primitives in the visualization specifcation including 
data transformations, scale functions, or conditional visual encodings. 
For example, a selection defned using the mouseover event may be 
used to highlight marks that a user hovers over with their cursor. Under 
the hood, the selection receives a stream of mouseover events with 
x and y coordinates in pixels. It uses the scales associated with the 
x and y encoding channels to invert these screen coordinates back to 
data coordinates (i.e. values in the domain of the corresponding scale). 
A default predicate function iterates over all rows in the dataset, and 
includes the rows matching those data values in the selection. 

Animated selections are analogous to interactive selections. How-
ever, instead of reacting to input events, animated selections use a 
timer event stream to advance an internal clock representing the 
elapsed time of the animation in milliseconds (ms). This clock resets to 
0ms when it reaches the end of the range defned by the time encoding’s 

scale (i.e. the animation loops the duration of the time scale’s range). 
As the clock updates, the elapsed time value is mapped to a value in 
the time domain (i.e. the time encoding’s feld values). The animation 
selection updates to include all data points matching that value. 

As selections rely on scales to convert map time to data values, 
selection-based animations still require a time encoding channel to be 
defned. In fact, all animations that can be expressed with only a time 
encoding can be elaborated into selection-based animations. In other 
words, selection-based animations are strictly more expressive than 
animations using only time encoding. 

4.2.1 Applying Selections 
In Vega-Lite, selections can be applied to other language constructs, 
including conditional mark encodings, scale domains, or data trans-
formations [52]. This property of composition continues to hold with 
Animated Vega-Lite: animated and interactive selections can be used 
interchangeably wherever selections are supported in the Vega-Lite 
language. Therefore, selections driven by timer events inherit the ex-
pressiveness of interactive selections in terms of Yi et al.’s taxonomy 
of interaction techniques [51]. Animations can be used to: select 
marks of interest; explore subsets of data (panning and zooming); re-
confgure data into different transformed states, connect related items; 
abstract/elaborate through overview and detail; and flter data dynami-
cally. However, they cannot be used to change the properties of visual 
encodings on the fy, which is an interaction technique that falls outside 
of the selection-based model and is a limitation of base Vega-Lite. 

4.2.2 Predicate 
As the animation’s elapsed time advances, the selection uses the scale 
defned in the time encoding to invert elapsed milliseconds (in the 
scale’s range) to a data value (in the scale’s domain). As a result, at any 
given time, there is an internal variable that has a data value correspond-
ing to the animation’s current time. When the Vega-Lite specifcation 
is compiled into Vega, this variable is represented as a Vega signal 
called anim value. In the Gapminder example, anim value starts 
at 1955 at 0ms, and advances to 1960, 1965, ..., 2005. 

To construct keyframes, the selection queries a subset of data tuples 
to include in the keyframe based on the current value of anim value. 
By default, tuples are included in the keyframe if their value in 
the time encoding’s feld (e.g. year for Gapminder) is equal to 
anim value. However, to defne alternate inclusion criteria for deter-
mining keyframes, users can specify custom predicate functions. For 
example, if at every step of the animation, a user wished to show all 
points with year less than or equal to anim value, they would use 
the following predicate: 

{"field": "year", "lte": "anim value"} 
Previously, Vega-Lite did not allow users to customize the selection 

predicate because the majority of interactions could be expressed us-
ing a combination of default predicates and selection transformations. 
Nonetheless, enabling predicate customization in the selection specif-
cation also increases the expressiveness of the interactive grammar. 

4.2.3 Input Element Binding 
Using the bind property, a user can populate a selection using a 
dynamic query widget (such as an HTML slider or checkbox). For 
animated selections, input element binding offers a convenient way to 
add interactive playback control to the animation. For instance, the 
user can bind an animated selection to a checkbox to toggle whether 
the animation is playing or paused. Similarly, they can bind a selection 
to a range slider and drag to scrub to a specifc time in the animation. 

Scrubbing the animation with the slider surfaces an interesting design 
challenge when combining animation and interaction: how should 
the system delegate control between the animation timer and user 
interaction? Initially, the animation is driven by the timer, with the 
slider visualizing timer updates. When the user starts dragging the 
slider, the system pauses the animation and delegates control to user 
interaction. Pausing is necessary so that the slider does not continue to 
advance forward while the user is currently scrubbing. When the user is 
done scrubbing, they may want to give control back to the animation. To 
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Fig. 4. Demonstration of the rescale time encoding property recreating a D3 bar chart race example [28]. (A) rescale is true: the viewport is 
recalculated on each keyframe. (B) rescale is false: the viewport is calculated on the whole dataset, and does not update with the selection. 

facilitate this, Animated Vega-Lite automatically includes a play/pause 
checkbox alongside bound sliders. The user can simply re-check the 
box to give control over the animation back to the timer. 

4.2.4 Pausing 
Animated Vega-Lite supports pausing in two ways: by interaction, 
and by data value. Interactive pauses are specifed using the filter 
property of Vega-Lite event streams. Users can provide the name of a 
Vega-Lite parameter to the filter property of a timer event stream. 
Parameters can be either selections or variables. When the provided 
parameter evaluates to true (i.e. is a non-empty selection or a true 
boolean variable), the flter will capture incoming events, preventing 
the animation clock from advancing. When the paramater evaluates 
to false, the events will resume propagating and the animation will 
continue. For example, a user can bind a checkbox to a parameter 
named is playing, and use the following event stream defnition to 
pause the visualization when the box is checked: 

"on":{"type": "timer", "filter": "is playing"} 
Pausing by data value is specifed using the pause property of an 

animated selection defnition. The user provides a list of data values 
to pause on, and the duration of each pause. For example, a user can 
specify that the Gapminder animation should pause on the year 1995 
for 2 seconds, to draw attention to the data for that year: 

"pause": [{"value": 1995, "duration": 2000}] 

4.2.5 Global Easing 
Easing is a common animation technique that involves controlling the 
rate that the animation timer advances. Easing is typically implemented 
using a palette of pre-defned functions that map an animation time do-
main to a transformed time domain. For example, an exponential easing 
function might cause the animation clock to begin advancing slowly, 
and then exponentially accelerate as the animation progresses. In An-
imated Vega-Lite, the animation clock advances linearly by default. 
However, users can use the easing property of a selection to specify 
an easing function to apply to the whole duration of the animation. 
Animated Vega-Lite exposes D3’s named easing functions [27]. 

5 IMPLEMENTATION 

We implement Animated Vega-Lite using a prototype compiler, wrap-
ping the existing Vega-Lite compiler to ingest Animated Vega-Lite spec-
ifcations and output a lower-level Vega specifcation. The Animated 
Vega-Lite prototype compiler begins by expanding a user-supplied 
specifcation into a “normalized” format with all implicit default values 
flled in explicitly. This step includes generating default selections and 
transforms for animations specifed using only time encodings, and 
flling in default scale and key defnitions. This normalized specifcation 
is passed to the next compiler step to simplify processing. 

To convert Animated Vega-Lite into low-level Vega, we use the exist-
ing Vega-Lite compiler to make the initial conversion into Vega (using 
a copy of the specifcation with animation removed), and then call a 
series of functions to compile animation-specifc parts of the spec and 
merge them with the output Vega. Because Vega-Lite’s high-level ab-
stractions do not have a one-to-one mapping to low-level Vega concepts, 
seemingly-isolated Vega-Lite fragments will typically make changes 
in many different parts of the Vega spec. Each of these functions takes 

in fragments of Animated Vega-Lite and standard Vega, and outputs a 
partial Vega specifcation that includes dataset, signal, scale, and mark 
defnitions to merge into the output. 

Compilation happens in six steps. First, compileAnimation-
Clock uses defnitions of animated selections and time encoding chan-
nels to create Vega signals and datasets for controlling the current state 
of the animation, handling pausing, and interfacing with interactive 
playback controls. Next, compileTimeScale takes in a defnition 
of a time encoding alongside Vega marks and scales. It creates Vega-
level scales for the time encoding, and signals to handle inversions 
between the animation clock and the corresponding data value at that 
time. It also applies rescaling to mark encodings if applicable. com-
pileAnimationSelections then ingests defnitions of animated 
selections to produce Vega signals and datasets that implement custom 
predicates, pausing and easing, and input element binding. Fourth, 
compileFilterTransforms takes animation selections and any 
flter transforms that reference those selections, and materializes the se-
lections as fltered datasets in Vega. These datasets provide the backing 
data for rendering marks at each keyframe. compileKey then uses 
the time encoding specifcation to generate datasets and signals that 
handle tweening between keyframes. Finally, compileEnterExit 
supports top-level enter and exit encoding defnitions in Animated 
Vega-Lite, converting them into Vega-level enter and exit encodings. 
Because of existing limitations in Vega, enter and exit currently are 
not well-supported for animation. However, pending Vega support, 
designers should be able to control the behavior of visual encodings as 
marks enter and exit the current keyframe. 

We chose to implement our compiler as a wrapper around the exist-
ing Vega-Lite compiler in order to facilitate rapid prototyping. However, 
our current approach faces performance challenges that could be im-
proved with internal changes to Vega and Vega-Lite. For example, 
we currently support tweening by creating three separate datasets: the 
current keyframe, the next keyframe, and a joined dataset with tweens 
computed as a derived column. This expensive operation causes notice-
able lag on large datasets. In future implementations, we can instead 
create a Vega datafow operator that leverages the animation’s semantics 
to compute tweens more effciently. For example, instead of computing 
multiple datasets independently and performing a join, the operator can 
create a single dataset backed by a sliding window over the time facets. 

6 EVALUATION: EXAMPLE GALLERY 

To evaluate Animated Vega-Lite’s expressiveness, we created an exam-
ple gallery to demonstrate coverage over both Yi et al.’s taxonomy of 
interaction intents [51] and Heer & Robertson’s taxonomy of transition 
types in animated statistical graphics [12]. As Fig. 5 shows, we support 
6 / 7 interaction categories and 5 / 7 animation categories. 

Fig. 5a demonstrates an overview + detail visualization. A selection 
controls a brush over the bottom view, which sets the zoomed viewport 
of the top view. This selection is defned using a predicate that defnes 
a sliding window over the x-axis feld. When the brush is driven 
by animation, the selection is updated on each timer event. When 
the brush is driven by interaction, the selection is instead updated on 
drag events. Because the original Vega-Lite selection model unifes 
panning and zooming as selections applied to a scale domain, this 
approach can be adapted to animate arbitrary geometric panning and 
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Fig. 5. Animated Vega-Lite examples demonstrating coverage over interaction and animation taxonomies [12,51] (see Fig. 4 for an example substrate 
transform and Fig. 3 for select). A) View transform via panning, abstract/elaborate via overview + detail, and connect ing multiple views. B) Filtering 
data via a predicate. C) Ordering / reconfguring a sorted axis in a bump chart. D) Exploring sequential timesteps of an index chart. E) A hypothetical 
outcome plot in the style of the New York Times [15]. F) An interactive brush selection over Gapminder. 

zooming behavior. This visualization demonstrates a view transforma-
tion, changing the reader’s viewpoint by panning and zooming the top 
view. It also demonstrates an abstract/elaborate intent by showing the 
data at different levels of detail in the top and bottom view, and the 
connect intent by showing corresponding data across multiple views. 

Fig. 4 shows a bar chart’s x-scale dynamically recalculating on each 
frame using the rescale property of a time encoding (Sect. 4.1.3). 
This animation technique demonstrates a substrate transformation 
through scale manipulations. It also demonstrates the reconfgure intent 
by showing a new spatial arrangement of the data. 

In Fig. 3 and Fig. 5b, we apply a conditional flter over the whole 
dataset, with flter parameters changing over time. In contrast to 
faceting, fltering can leverage custom selection predicates to show 
and hide data — a single data point can appear in multiple groups. Both 
taxonomies contain a category for fltering, shown here by adding or 
removing elements from the display. Fig. 3 additionally demonstrates a 
select intent by using conditional encoding to highlight selected data. 

Fig. 4 and Fig. 5c show examples with a sorted axis. When a key 
is specifed in a time encoding, the system automatically tweens an 
element’s position even when its sort index has changed in the next 
keyframe. Continually sorting elements as the underlying data changes 
demonstrates an ordering transition, as well as a reconfgure intent. 

Time encodings transition between sequential time values by default 
in Animated Vega-Lite (e.g. Fig. 2). Fig. 5d demonstrates an additional 
example of this animation. A default animated point selection is applied 
to a data transform that re-normalizes a stock price time-series chart on 
each tick. The original Vega-Lite paper contains an interactive version 
of this example, which instead populates the point selection on mouse 
hover events [36]. These examples demonstrate timestep transitions, 
which also fulfll the explore intent by showing new data points at each 
step. Axis re-normalization is also an example of a reconfgure intent. 

In addition to achieving broad coverage over the two taxonomies, our 
system also supports simulation techniques including hypothetical out-
come plots (Fig. 5e) [13]. And, as previously discussed in Sect. 4.2.1, 
animated selections can be applied to the same set of dynamic visual be-
haviors as interactive selections. Consequently, users can easily switch 
between timer and input event streams when prototyping existing inter-
action techniques in Vega-Lite. For example, Fig. 5a and Fig. 5d show 
animated selections driving common interaction techniques — panning 
and re-normalizing, respectively. Users can also easily compose inter-
action techniques with animated visualizations by defning additional 
selections. For example, Fig. 5f demonstrates an interactive brush used 
to highlight a region of an animated Gapminder visualization. Points of 
interest are conditionally colored as they enter or exit the brush region. 

Discussion and Limitations. Like the original Vega-Lite, Animated 
Vega-Lite intentionally trades some limits to expressivity for gains in 
concise, high-level, declarative specifcation. In Sects. 7.2.1 & 7.2.2, we 
detail this expressiveness tradeoff in terms of the classes of animation 

techniques (Animated Vega-Lite primarily supports scene techniques 
instead of segue) as well as the implications on how keyframes are 
modeled and generated (Animated Vega-Lite supports non-parametric 
keyframe transitions, and offers some limited support for parametric 
keyframe transitions). Thus, lower-level and imperative languages will 
necessarily be more expressive: for instance, D3 can express both scene 
and segue animations, but using different language constructs (timer 
event loops and transition functions, respectively). As these sections 
describe, offering high-level declarative specifcation that unifes not 
only these distinct conceptual models of animation, but also interaction 
and static charts, remains a compelling direction for future work. 

By extending Vega-Lite, Animated Vega-Lite also inherits its pre-
decessor’s limitations. For instance, Vega-Lite selections cannot alter 
visual encodings or data transformation pipelines at runtime (the encode 
interaction type in Yi et al.’s taxonomy [51]); thus, Animated Vega-
Lite cannot support the visualization change or data schema change 
transition types in the Heer & Robertson taxonomy [12]. 

7 EVALUATION: CRITICAL REFLECTION 

To identify our grammar’s design tradeoffs, we compared our approach 
to existing animated visualization grammars following the critical 
refections evaluation method [35]. We recruited fve developers of 
existing grammars: John Thompson and Leo Zhicheng Liu1 of Data 
Animator [46], Tong Ge of Canis [10] and CAST [9], Thomas Lin 
Pedersen of gganimate [43], and Younghoon Kim of Gemini [19] and 
Gemini2 [20]. We focused on animation grammar developers because 
the interactive grammar was evaluated in the original Vega-Lite paper. 
With each participant, we conducted a one-hour pre-interview. We 
then asked them to asynchronously engage with our grammar for an 
extended time by reading a system walkthrough and grammar docu-
mentation similar to Sect. 3 and Sect. 4, respectively, and run examples 
similar to those found in Sect. 6. We further suggested participants 
write new specifcations and/or port other examples, including exam-
ples from their own tools. We encouraged participants to take notes and 
refect on the design of Animated Vega-Lite during the process. Finally, 
we conducted post-interviews with each participant that lasted 30–60 
minutes. Each participant was offered a $125 gift card as compensation. 

Our goals were to (i) compare and contrast their design processes 
with ours, (ii) understand differences and design tradeoffs between 
their grammars and ours, and (iii) generate insights about the direction 
of future animation grammars. During the interviews, three of the 
authors of this paper began developing initial thematic hypotheses. 
After the interviews, we independently conducted a thematic analysis 
before fnally coming together and synthesizing our insights, which we 
summarize below. These themes provide insight into the design of our 
grammar, and animated visualization grammars more generally. 

1Thompson & Liu also co-authored the original critical refections paper [35]. 



    

      

 

7.1 Grammar Design Process 

7.1.1 Specifc Examples Motivate Grammar Design 

When scoping their research projects, our interviewees prioritized mo-
tivating examples that they found personally compelling. For example, 
the authors of Data Animator and Gemini were both motivated in part 
by R2D3 [40]. As we discuss in the following subsections, the choosing 
examples to support leads to design tradeoffs, e.g. between scene- and 
segue-dominant abstractions (Sect. 7.2.1). Thus, a handful of com-
pelling in-the-wild examples can signifcantly infuence the grammars 
developers build. Other examples that were cited across multiple in-
terviews included Gapminder [34], Periscopic’s Gun Deaths [31], and 
animations in the New York Times (NYT) and the Guardian. 

On the other hand, a lack of existing examples may also motivate 
a grammar developer. For example, to gain more insight into the 
popularity of animated visualization techniques, Kim scraped NYT 
and Guardian articles from 2018 as well as YouTube videos from the 
same year. He noticed that about 90% of the animated visualizations he 
studied updated data, but kept the encoding fxed. R2D3 was a notable 
exception. A similar imbalance can be found in the Data-Gifs example 
gallery [39], where over half of the examples have fxed encodings. 
Kim hypothesized that the imbalance is infuenced by the affordances of 
existing tools, and decided to optimize Gemini for transitions between 
changing encodings. 

With Animated Vega-Lite, we were motivated by the large collection 
of existing examples with static encodings, such as those in the Data-
Gifs example gallery. This category includes many prominent designs 
like Gapminder and bar chart races. Rather than focus on developing 
an expressive language of transitions between keyframes, we focused 
on an expressive language of keyframe generation via selections. Our 
abstractions facilitate the design of visualizations that must produce 
many keyframes backed by a fxed encoding. 

7.1.2 Natural Programming vs. Core Calculus Design 

To make their systems easy to use for their target audiences, the au-
thors of Data Animator and Gemini aimed to develop grammars that 
matched the existing mental models of animation designers. To that end, 
both groups conducted interviews prompting experienced animators to 
sketch interfaces or write pseudocode to recreate exemplar animated 
visualizations [19, 45]. Fundamental abstractions emerged from these 
formative studies. For instance, Gemini’s studies yielded the concepts 
of synchronizing (‘at the same time’) and concatenating (‘then’, ‘af-
ter’) while Data Animator’s studies surfaced designers’ familiarity with 
keyframes in Adobe After Effects. This design process is known as 
natural programming, where a developer aims “for the language and 
environment to work the way that nonprogrammers expect” [30]. 

In contrast, we set out to develop a small core calculus [6] of ab-
stractions for Animated Vega-Lite, which we outlined in Sect. 4. Our 
design was motivated by the desire to explore whether interaction and 
animation could be unifed. This unifcation would likely not have been 
elicited by a target user. Because the key idea of our paper is to identify 
a unifed abstraction, this difference in approach results in a design 
tradeoff. As Kim explained, Animated Vega-Lite may seem natural to 
a Vega-Lite user, but might present a steeper learning curve to someone 
familiar with animation tools like Adobe AfterEffects, as Animated 
Vega-Lite has no explicit concept of a keyframe. 

Analyzing these processes via the Cognitive Dimensions of Nota-
tion [44], we fnd that iterating closely with end users in a natural 
programming process yields a grammar that closely maps to common 
user mental models. On the other hand, by distilling abstractions to 
a reduced set of orthogonal concepts, a core calculus process better 
emphasizes a consistent API that has low viscosity. Over-emphasizing 
one process or the other may drag a language design too far to one side. 
With PLIERS, Coblenz et al. [6] offer suggestions for how developers 
may integrate and balance between these approaches. They recommend 
a developer iterate between developing the theoretical foundations of 
their language (core calculus) and the user-facing language (surface 
language). Moreover, Coblenz et al. suggest adapting natural pro-
gramming by progressively prompting a user with incrementally more 

information about a language’s proposed API. This additional scaffold-
ing can help scope how natural programming studies explore mental 
models, and also lets a language developer gain insights even when the 
core calculus signifcantly departs from a user’s familiar models. Inte-
grated design processes, like PLIERS, are likely to be valuable methods 
for assessing future unifed grammars, because these systems must 
balance signifcant conceptual unifcations with end-users’ ease-of-use. 

7.2 Animation Abstractions and Design Considerations 

7.2.1 Scene- vs. Segue-Dominant Abstractions 

Several interviewees noted that Animated Vega-Lite’s abstractions ap-
pear complementary to their systems. For example, Kim noted his 
conceptual distinction between Animated Vega-Lite and Gemini is 

“[Animated Vega-Lite] animates the internal state within Vega-Lite, and 
Gemini doesn’t care about the internal state. It just transforms be-
tween two static states of Vega-Lite.” Similarly, Thompson said “if 
you compare [Animated Vega-Lite] directly to Data Animator, the two 
of them together would be really nice. What one doesn’t have, the 
other does really well.” For instance, he highlighted Animated Vega-
Lite’s ability to automatically generate keyframes from data (e.g., each 
year keyframe in Gapminder) and Data Animator’s ability to pre-
cisely specify transitions between keyframes (such as staggering) as 
complementary components of the two systems. He also appreciated 
Animated Vega-Lite’s ability to create overlapping keyframes via layer-
ing, as in our bar chart race example (Fig. 4). Pedersen provides one 
explanation for why our approach is complementary to the existing 
systems we studied. In his useR! 2018 keynote, Pedersen introduced 
the concepts of a scene and a segue animation [41]. A scene animation, 
such as Gapminder, is one where the data is changing (such as countries 
ranging over years), but the visual encoding is not. One can imagine 
a scene playing within a fxed stage (i.e., a static visual encoding). In 
contrast, a segue animation — such as a pie chart transitioning to a bar 
chart — is one where the visual encoding is changing, but the data is 
fxed. In practice, the line between a scene and segue is not always 
clear. For example, transitioning from a strip plot to a box and whiskers 
plot involves both a change to the data (computing aggregate quantities) 
and a change to the visual encoding (converting to box-and-whiskers). 

Using this scene and segue distinction, Animated Vega-Lite and 
gganimate may be categorized as scene-dominant grammars. Both 
systems aim to cover a large space of animated visualizations with 
fxed encodings, such as Gapminder and bird migrations. Both systems 
support an additional collection of visual encoding transformations. For 
example, Animated Vega-Lite supports rescaling, panning, and zoom-
ing while gganimate supports transitions that can interpolate between 
different shapes with the same underlying data. Though both Animated 
Vega-Lite and gganimate are scene-dominant systems, Pedersen high-
lighted the expressiveness of Animated Vega-Lite’s selection model for 
generating arbitrary keyframes from data (as shown with the Dunkin 
example in Fig. 3) as a key conceptual distinction between the two. 

On the other hand, Data Animator, Canis, and Gemini are segue-
dominant. These systems have focused primarily on connecting two 
distinct keyframes that may have distinct visual encodings and data. To 
construct a transition, Data Animator, Canis, and Gemini each construct 
a mapping between two keyframes. This approach works well when the 
data set is fxed, and there are only a few keyframes (as is typical when 
showing a small handful of segues). But as identifed by Thompson 
and Liu, to support an animation like Gapminder, these systems must 
produce a keyframe for every year in the dataset. 

As discussed in Sect. 6, Animated Vega-Lite inherits Vega-Lite’s 
inability to represent complex runtime changes to visual encodings 
and data transformations. We suspect that extending Vega-Lite with 
these capabilities could enable segue animations in a future version of 
Animated Vega-Lite. To support complex runtime changes, Vega-Lite’s 
conditional encodings could be extended from just mark properties to 
mark types and data transforms as in Ivy [25]. And our support for 
enter and exit could be extended to operate not just on data, but also on 
these more expressive encoding changes. 



  

  

      

     

 

Fig. 6. Swimming World Records example from Data Animator [16]. 

7.2.2 Modeling Transitions Between Keyframes 

Keyframes were the most salient animation abstraction in our inter-
views. We discussed keyframe concepts with every interviewee, and 
they would often use keyframes to pose comparisons between different 
systems’ abstractions. Every tool had to make decisions about (i) how 
to generate keyframes and (ii) how to transition between them. More-
over, keyframes and transitions are useful abstractions for both scene-
and segue-dominant systems. In this subsection we surface an axis of 
the keyframe design space: modeling transitions between keyframes. 

Non-parametric transitions. The simplest kind of transition be-
tween keyframes is a non-parametric transition. Consider a linear 
sequence of keyframes, where each keyframe describes an entire scene-
graph. Transitions between these keyframes are non-parametric in 
that the same transition is applied to every data point. For example, 
changing every bar to a point in 0.5 seconds (a segue animation) is a 
non-parametric transition because the transition’s defnition is indepen-
dent of the mark’s encoded data — i.e. its duration is a constant value. 
Similarly, animating countries in Gapminder (a scene animation) is 
also a non-parametric transition because the transition applied to each 
mark is identical (moving between two points in a fxed time interval). 

Animated Vega-Lite supports non-parametric transitions via its timer, 
easing, and interpolation abstractions, which implicitly specify a transi-
tion across keyframes. The other libraries also support non-parametric 
transitions between pairs of keyframes, but only scene-dominant sys-
tems (gganimate and Animated Vega-Lite) support non-parametric 
transitions across many keyframes. In scene-dominant animations, 
the same transition specifcation can be reused across a sequence of 
keyframes sharing a fxed encoding. 

Parametric transitions. In contrast to non-parametric transitions, 
parametric transitions involve transition defnitions that depend on the 
backing data. A common use case for this model is to stagger transi-
tions — a common segue technique that applies a small delay to each 
animated element to make them easier to track [12]. Because para-
metric transitions depend on data, individual marks can have different 
timing properties during the same transition. 

Segue-dominant systems Data Animator, Canis, and Gemini all 
support parametric transitions. But, as Thompson identifed in his post-
interview, parametric transitions also increase the expressive gamut 
of scene animations. For example, Fig. 6 shows “Swimming World 
Records Throughout History” from the Data Animator example gallery. 
This animated scatterplot shows replays of world record swimmers. 
The input data includes swimmers and their fnal race times. When 
Thompson tried to port this example to Animated Vega-Lite, he realized 
he “had no clue how to do it. The two keyframes in this example are 
very simple. All of the circles at one x position, and then all of the 
circles like 200–400 pixels to the right. For us, you change the speed of 
each individual shape based on a data property.” Animated Vega-Lite 
could support this animation by allowing users to explicitly defne a 
transition, with its speed parameterized by a data value. 

To support parametric transitions, future versions of Animated Vega-
Lite could use Lu et al.’s concept of “dynamic functions” [24]. These 
functions use mappings between data and transitions to specify rate-
of-change properties of transitions over time (e.g., encoding transition 
speed instead of mark position). Adapting this segue-dominant concept 
to Animated Vega-Lite could increase expressivity, though further 
work is required to understand its composition with and implications 
for static and interactive language constructs. For instance, segue 
transition properties may more easily compose with existing static and 

interactive Vega-Lite constructs if translated back into scene keyframes 
as direct encodings instead of rates (e.g. instantiating transition speed 
as additional position keyframes). However, this would trade off the 
memory effciency of the segue representation. 

Connecting transitions in series and parallel. Some of the most 
compelling animated examples cannot be represented as a linear se-
quence of transitions, parametric or not. For instance, Periscopic’s Gun 
Deaths animation [31], a visualization frequently cited by our inter-
viewees, cannot easily be represented even by parametric transitions. 
When discussing this example, Thompson remarked: “This was one 
that I had on my list of ‘oh it would be so cool if we could create this,’ 
and then I could just not fgure out a way of doing it. [...] How do you 
have the circle appear and then drop, and then the line keeps going? 
I have no clue how to do that [in Data Animator]”. Authoring this 
animation is diffcult because there is no linear transition specifcation: 
the animation splits in two when the circle drops and the line continues. 
We are not certain that any of the grammars we have discussed in our 
critical refections can easily express this animation, because it involves 
both scene and segue animation. 

Gemini’s composition rules offer a promising path for the transitions 
necessary to support the Gun Deaths animation. Gemini’s concat 
primitive allows a user to specify animations in series, while its sync 
primitive allows a user to specify animation components that play in 
parallel. Using these primitives, one could specify a sync that splits the 
animation into the circle and the line, and then concat the many stages 
of the Gun Deaths animation together. More generally, concat and sync 
allow a user to model transitions as a series-parallel graph [48]. 

However, this abstraction alone is not enough. While Gemini has 
a rich transition language, it cannot generate keyframes automatically 
from data like Animated Vega-Lite. This generation is necessary for the 
Gun Deaths animation to visualize individual points. Combining Gem-
ini’s segue abstractions with Animated Vega-Lite’s scene abstractions 
is a promising future direction for expressive animation. 

8 CONCLUSION AND FUTURE WORK 

Animated Vega-Lite contributes a low viscosity, compositional, and 
systematically enumerable grammar that unifes specifcation of static, 
interactive, and animated visualizations. Within a single grammar, au-
thors can now easily switch between the three modalities during rapid 
prototyping, and also compose them together to effectively communi-
cate and analyze faceted and time-varying data. 

Our grammar takes a promising step in helping authors develop 
visualizations that leverage the dynamic affordances of computational 
media. During interviews, Pedersen described unifcation as the “holy 
grail” of data visualization APIs: “A grammar of graphics that defnes 
how things look, a grammar of animation that defnes how things 
react, and a grammar of interaction that defnes how things interact. 
Having all of that in one unifed theoretical framework would simply 
be awesome.” Future work might more deeply explore the distinctions 
and tradeoffs we surfaced between transition and keyframe models, 
or study the implications of unifcation at the lower-level of reactive 
programming semantics and data stream management. 

Beyond language design, we hope that Animated Vega-Lite facili-
tates future work on interactive and animated visualization akin to the 
role the original Vega-Lite has played. For instance, how might we 
leverage Animated Vega-Lite’s ability to enumerate static, interactive, 
and animated visualizations to study how these modalities facilitate 
data analysis and communication — replicating and extending prior 
work [33] more systematically? Similarly, how might study results be 
codifed in the Draco knowledge base [29], or exposed in systems like 
Voyager [49, 50] or Lux [23] to recommend animated visualizations 
during exploratory data analysis? To support this future research, we 
intend to contribute our work back to the open source Vega-Lite project. 
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