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ExTRACT MODEL CONFIDENCE
A model’s confidence distribution is a 
reflection of its underlying knowledge.

Compare TO human abstractionS
Human abstractions represent the concepts and  
relationships we expect models to learn.

Measure alignment
Abstraction alignment measures how much of a model’s 
uncertainty can be explained by the human abstractions.

SUBGRAPH PREFERENCE: Confidence in different regions of the abstraction.

ABSTRACTION MATCH: Uncertainty reduced by a level of abstraction.

CONCEPT CO-CONFUSION: Concepts the model regularly confuses.

Figure 1: Abstraction alignment measures human-AI alignment by comparing model behavior to known human abstractions.

Abstract
While interpretability methods identify a model’s learned concepts,
they overlook the relationships between concepts that make up its
abstractions and inform its ability to generalize to new data. To as-
sess whether models’ have learned human-aligned abstractions, we
introduce abstraction alignment, a methodology to compare model
behavior against formal human knowledge. Abstraction alignment
externalizes domain-specific human knowledge as an abstraction
graph, a set of pertinent concepts spanning levels of abstraction. Us-
ing the abstraction graph as a ground truth, abstraction alignment
measures the alignment of a model’s behavior by determining how
much of its uncertainty is accounted for by the human abstractions.
By aggregating abstraction alignment across entire datasets, users
can test alignment hypotheses, such as which human concepts the
model has learned and where misalignments recur. In evaluations
with experts, abstraction alignment differentiates seemingly similar
errors, improves the verbosity of existing model-quality metrics,
and uncovers improvements to current human abstractions.
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1 Introduction
AI alignment is increasingly critical to meet growing societal and
regulatory demands for AI systems that make human-like deci-
sions [136, 143]. To meet these demands, the research community
has developed interpretability methods to uncover the concepts
models use to reason about their inputs and generate outputs— for
instance, using wheels to classify car images [50, 104] or tourist
attractions to respond to travel text [142]. By analyzing these
concepts, users can better understand model behavior and identify
potential misalignments, such as an overreliance on one medical
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concept when making complex diagnoses [15, 72] or a propensity
for sycophantic responses at the expense of truthfulness [142].

However, existing methods analyze a model's learned concepts
in isolation, quantifying the model's sensitivity to each concept
independently [73, 142]. While such testing procedures identify the
importance of each concept to the model's decision, they overlook
the model's learned relationships between concepts. Yet, conceptual
relationships are core to the ability to extrapolate learned concepts
to new data, contextualize knowledge across tasks, and �exibly
reason at a task-appropriate level of speci�city [3, 42, 87, 160].
Interpreting these characteristics of a model requires analyzing
its abstractions, validating that it has not only learned granular
concepts (e.g.,schnauzer), but that it also organizes them into
progressively more general notions (e.g.,dog and thenanimal ).

Although existing interpretability techniques have been used
to discover that models learn concepts at varying levels of de-
tail [7, 50, 57, 72, 102], analyzing abstractions requires signi�cant
manual e�ort. Users must survey interpretability results piece-by-
piece to con�rm that the model's abstractions are human-aligned,
checking that all concepts activate as expected [72, 142], the set of
concepts is comprehensive for the task [142], and similar concepts
are represented similarly by the model [19, 142]. In each of these
cases, the process of estimating alignment occurs largely inside the
user's head, requiring signi�cant cognitive e�ort to compare model
concepts against their domain abstractions. Moreover, by relying
on individuals' mental abstractions, existing approaches limit align-
ment assessment to users with deep domain-speci�c knowledge,
such as medical specialists [15, 72] or chess Grandmasters [127].

To sca�old the process of assessing model alignment, we intro-
duceabstraction alignment, a methodology to measure the agree-
ment between a model's learned abstractions and an explicit human
representation of the modeled domain. Abstraction alignment is
a form of representational alignment [136] that compares model
outputs (a proxy for its internal representations) against codi�ed
human abstractions (a proxy for our internal representations). Ab-
straction alignment begins with ahuman abstraction graph� an
agreed upon representation of formal human knowledge containing
a set of pertinent concepts spanning levels of abstraction, such as
a lexical graph [90] or medical hierarchy [157]. It then measures
alignment by evaluating how well the abstraction graph accounts
for a model's decision uncertainty. Through this process, model out-
put probabilities (i.e., con�dence in each class or token) are mapped
to concepts in the human abstraction graph, and the probabilities
of sibling concepts (e.g.,guitarist andsinger ) are summed and
propagated to shared ancestors (e.g.,musician andartist ). The re-
sult is the model's�tted abstraction graph, representing its decision
making process across concepts at many levels of abstraction.

To aggregate abstraction alignment over many model decisions,
we de�ne three metrics.Abstraction match measures how much
of the model's confusion is mitigated by moving up a level of abstrac-
tion, concept co-confusion tests how often the model confuses
concepts, andsubgraph preference quanti�es which abstractions
the model prefers. By integrating the abstraction alignment met-
rics into an interactive interface, we enable users, ranging from
computer scientists to medical domain experts, to ask and answer
alignment hypotheses, such as which human concepts the model
has learned and what recurring misalignments the model makes.

We demonstrate how abstraction alignment facilitates align-
ment analysis through case studies with expert users interpreting
an image classi�cation model, benchmarking generative language
models, and auditing a clinical ML dataset. In an image classi�ca-
tion task, abstraction alignment helps interpret model behavior by
distinguishing problematic misalignments from benign low-level er-
rors. Analyzing abstraction alignment across the entire test dataset
reveals that most model mistakes are not abstraction-aligned, as it
learns to di�erentiate images using visual abstractions likecolor
instead of the desired human abstractions based onbiological and
usagedi�erences. These misalignments suggest instances where
the model may fail, ways to improve data collection, and possible
recategorizations of the human abstraction graph.

Then, we collaborate with three language model researchers,
applying abstraction alignment to their alignment task: investi-
gating the speci�city of generative language models. While users
currently test model speci�city by comparing the model's gener-
ated text against a few synonymous words, abstraction alignment
expands the verbosity of these benchmarks by testing thousands
of words across numerous levels of abstraction. As such, we �nd
that abstraction alignment allows researchers to test more complex
hypotheses, such as the model's preferred level of speci�city and
which unrelated words the model commonly confuses.

Finally, in a participatory AI setting, four medical experts analyze
abstraction alignment to audit the MIMIC-III clinical dataset [67,68],
testing whether its labels re�ect appropriate medical abstractions.
With abstraction alignment, experts uncover discrepancies between
the medical abstractions we expect models to learn and those cod-
i�ed in the dataset. For instance, experts �nd that how diseases
are classi�ed in the dataset does not always align with the World
Health Organization's (WHO) standards [157]. These abstraction
misalignments suggest data processing strategies that better re�ect
human expectations and exposes known issues in the disease hierar-
chy, some of which have been recently addressed by the WHO [28].
These results signal that, beyond improving the alignment of model
representations, abstraction alignment may also inspire improve-
ments to existing human representations.

Abstraction alignment is publicly available with open-source
code at https://github.com/mitvis/abstraction-alignment and an
interactive interface at https://vis.mit.edu/abstraction-alignment/.

2 Related Work
2.1 Abstraction and Human Knowledge
Abstraction is the process of distilling many individual data in-
stances into a set of fundamental concepts and relationships that
capture essential characteristics of the data [3, 87, 160]. It is a key
feature of human cognition as it allows us to �exibly reason at
the level of speci�city appropriate for our task and generalize our
knowledge by �tting abstracted patterns to new data [42, 150, 160].
As a result, abstractions form the basis for human information en-
codings across domains like linguistics [35, 90], biology [59, 86],
and medicine [157, 158]. In machine learning, abstractions are built
into many tasks, including image classi�cation [32, 77] and medi-
cal coding [67, 68]. Even datasets without built-in abstractions are
often linked to existing abstractions by matching their outputs to
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corresponding concepts [121]. Encouragingly, researchers have re-
cently integrated human abstractions into model training pipelines,
resulting in increased model generalization [97], and advocated
for using conceptual relationships, like abstractions, to advance
our understanding of foundation models [153]. Building on this
rich history, abstraction alignment leverages abstractions to better
understand human-AI alignment.

Related research has studied formal representations of human
knowledge, known as knowledge graphs [61,66]. Knowledge graphs
re�ect the relationships between entities, like distance (Eiffel
Tower � is near! Arc de Triomphe) or connectivity (BOS� direct
�ight ! MEX) [61]. In abstraction alignment, we represent human
abstractions as an abstraction graph, a type of knowledge graph
where nodes are concepts and edges encode abstractions from spe-
ci�c to general concepts (e.g.,cardiologist � type of! doctor
or Montreal � located in! �ebec ). We make this distinction
because we are interested in understanding whether a model has
learned to reason with human-like abstractions. These human ab-
straction graphs provide an explicit representation of formal human
knowledge (Section 3.1) that allows us to quantify alignment.

2.2 AI Alignment and Interpretability
Aligned with our goal of understanding machine learning models,
interpretability research measures model reliance on known human
concepts [37, 118]. For instance, saliency methods highlight rele-
vant input features [15, 25, 114, 128, 133]; example-based methods
derive in�uential inputs [76, 93, 159, 164]; feature visualizations
identify concepts that activate model neurons [7, 41, 57, 83, 105];
and concept-based [50, 73] and mechanistic methods [19, 39, 56,
83, 84, 89, 104, 142] identify human concepts encoded in a model's
latent space. Together these methods have identi�ed problematic
model correlations [24], made sense of complex neuron activa-
tions [26, 84, 98, 106], and discovered novel concepts that advance
human understanding [127]. Building on their success, abstraction
alignment expands these methods from identifying independent
concepts to understanding the relationships between them, ensur-
ing that models learn human-aligned concepts and abstractions.

At the same time, visualization research has explored how to com-
municate interpretability results to users. Visualizing interpretabil-
ity results � e.g., saliency heatmaps [17, 71, 126, 133], embedding
scatterplots [14, 132, 154], and feature dictionaries [27, 85, 142] �
has enabled greater meaning-making from experts and engagement
from lay users [9]. Interactive interfaces [8, 20, 122, 135, 155] have
allowed users to perform error analysis [140, 159], track model
provenance [1, 16], inspect decision boundaries [134], and inter-
vene on models [62]. We instantiate abstraction alignment in an in-
teractive interface (Section 4), allowing users, from ML researchers
to domain experts, to actively participate in alignment tasks.

Abstraction alignment also follows a rich history of human-AI
alignment research [136, 143], studying methods for measuring [6,
82, 96, 103, 120], bridging [52, 119, 127], and increasing [60, 97, 115,
145] the alignment of model and human representations. Within
the alignment framework developed by Sucholutsky et al. [136],
abstraction alignment is a form of behavioral alignment [49, 108]
where model outputs serve as proxies for its internal represen-
tations. Our experiments examine representational alignment by

comparing model representations (proxied by model outputs) and
human representations (proxied by the human abstraction graph)
across a set of evaluation data. In Section 3.4, we characterize ab-
straction alignment using the alignment framework developed by
Sucholutsky et al. [136]. Unlike prior studies that focus on a single
metric to quantify and optimize alignment, abstraction alignment
o�ers a methodology for evaluating how closely model behaviors
re�ect formal human knowledge. As a result, there are many possi-
ble metrics that capture speci�c aspects of abstraction alignment
(we de�ne three in Section 3.3) and abstraction alignment facilitates
qualitative, interactive human analysis (Section 5).

2.3 Uncertainty Estimation
Abstraction alignment relies on model uncertainty to compute align-
ment, working under the assumption that the model's uncertainty
re�ects its learned abstractions. Model uncertainty can be broadly
categorized as aleatoric [100, 123], arising from irreducible observa-
tional noise like noisy data and labeling errors, or epistemic [151],
stemming from limited knowledge like insu�cient training data or
out-of-distribution inputs [46, 64, 74, 165]. Relatedly, uncertainty
quanti�cation research focuses on accurately extracting these un-
certainties from models such that the model's purported con�dence
is an interpretable measure of correctness [2, 29, 47, 51, 78, 79, 163].
Instead of classifying or adjusting model uncertainty, abstraction
alignment uses it as a proxy for the model's internal representations.
As a result, abstraction alignment is agnostic to the type of uncer-
tainty, because both types re�ect the model's internal conceptual
boundaries and future behavior. Whether the uncertainty arises
because the model lacks training data to distinguish a concept (epis-
temic) or because humans also confuse the concept (aleatoric), it
nevertheless represents the model's understanding of that concept.

3 The Abstraction Alignment Methodology
The goal of abstraction alignment is to measure how well a model's
behavior aligns with human abstractions. Our method is based
on the assumption that a model's uncertainty is a re�ection of its
learned abstractions. That is, concepts the model commonly con-
fuses are more similar in its abstractions than concepts it perfectly
separates. For instance, if a model has learned human abstractions,
then, in aggregate, it should be more likely to confuseappleswith
other fruits than with unrelated concepts, likemotorcycles .

While there are likely many methods for measuring abstrac-
tion alignment, we take a post hoc and model-agnostic approach
that compares model outputs against existing human abstractions.
To compute abstraction alignment, we represent human abstrac-
tions as anabstraction graph(Section 3.1). We compare the model's
behavior to human abstractions by mapping the model's output
options (e.g., its classes or tokens) to concept nodes in the human
abstraction graph (Section 3.2). Given a dataset instance, like an
image or a sentence, we compute the model's�tted abstraction
graph, a weighted version of the abstraction graph representing the
model's con�dence in a range of concepts across multiple levels of
abstraction. We use the model's �tted abstraction graphs to de�ne
abstraction alignment metrics that quantify how well the human
abstractions account for the model's behavior (Section 3.3).
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1 # Pseudocode to compute the model' s f i t ted abstract ion
2 # graph for one dataset instance .
3 def fit ( abstractionGraph , model , outputs , instance ):
4 # Init ial ize the values in the human abstract ion graph .
5 f i t tedAbstract ionGraph = abstract ionGraph .copy ()
6 for node in f i t tedAbstract ionGraph :
7 node .value = 0
8

9 # Set node values based on the model' s confidence .
10 probabi l i t ies = model ( instance )
11 for i , probabi l i ty in enumerate ( probabi l i t ies ):
12 node = fi t tedAbstract ionGraph .getNode (outputs [ i ])
13 node .value = probabil i ty
14

15 # Propagate the values from leaf to root .
16 for level in reverse ( f i t tedAbstract ionGraph . levels ) :
17 for node in level :
18 for child in node . chi ldren :
19 node .value += child . value
20

21 return f i t tedAbstract ionGraph

Figure 2: To compare model behavior with human abstrac-
tions, abstraction alignment computes a �tted abstraction
graph for each model decision. First, we map the model's
output space to concepts in the human abstraction graph.
Then, we assign each concept a value corresponding to the
model's con�dence in that concept or any of its descendants.
The resulting �tted abstraction graph represents the model's
con�dence in a range of concepts across levels of abstraction.

3.1 Representing Human Abstractions
Abstraction alignment shifts the alignment process from mentally
estimating alignment using a human's internal knowledge to ex-
ternally inspecting precomputed alignment results. To do so, we
externalize formal human knowledge as a directed acyclic graph
(DAG) called thehuman abstraction graph. We de�ne an abstrac-
tion graph as a type of knowledge graph where nodes represent
concepts and edges represent abstraction relationships between
precise and broad concepts. For example, in the medical abstraction
graph in Section 5.3, nodes represent medical diagnoses and edges
represent the abstractions between speci�c diagnoses, likefrontal
sinusitis , and broader diagnostic categories, likerespiratory in-
fections [157]. Formally, the human abstraction graph is a DAG�
containing a set of nodes# := f=: g. Nodes are distributed across
levels! := f ;� gwhere each;� � # , and a node's level is de�ned as
the length of the longest path (� ) from the node to a root.

DAGs are well suited to representing human abstractions be-
cause they e�ciently encode both human concepts and abstraction
relationships. We can easily access a concept's level of abstraction
by measuring its height and move up and down levels of abstrac-
tion by accessing its ancestors or descendants. Since the graph is
acyclic, it guarantees the hierarchical structure that underpins ab-
straction. Further, DAGs are commonly used to represent human
abstractions [90, 157] and are built into ML datasets [32, 67, 68, 77],
allowing abstraction alignment to apply to various domains.

We use human abstraction graphs as agreed-upon, external rep-
resentations of formal human knowledge. While they may not per-
fectly match any individual's internal abstractions, they are useful
proxies as they re�ect collective human meaning-making. For exam-
ple, while we may not individually know every word and relation in

the WordNet lexical graph, it nevertheless represents collective Eng-
lish language abstractions that we use to communicate [90]. These
graphs are often shared between individuals [95, 101, 137, 147],
used to educate newcomers to a domain [157], and employed when
building additional knowledge representations [32, 77].

3.2 Integrating Model Outputs with Human
Abstractions

To compare the model's behavior against human abstractions, we
map the model's output space (e.g., its classi�able classes or gen-
eratable tokens) to nodes in the human abstraction graph. This
de�nes a mapping from each of the model's outputs$ := f>9g to
a node=: 2 � that corresponds to the same concept. Often this
mapping is straightforward because the human abstraction graph
is built into the modeling task � e.g., the CIFAR-100 classes are
mapped to higher-level concepts [77] (Section 5.1). However, even
when the human abstraction graph is separate from the modeling
task, the model's outputs can often easily be mapped to the graph's
nodes. For instance, in Section 5.2, we map language model tokens
to words in the WordNet lexical graph [90] by searching WordNet
for the token's most similar de�nition.

With a mapping from model output to concept node, we can now
compare the model's behavior against the human abstractions. To
do so, we compute a�tted abstraction graph, a weighted version of
the human abstraction graph representing the model's con�dence
in each concept for a given decision. Following the algorithm in
Figure 2, we compute a �tted abstraction graph for every instance
in an evaluation dataset� := f38g. Given an instance38, like an
image or sentence, we extract the model's probability for each
possible output concept>9. Then, we assign each node in the human
abstraction graph=: a valueE8: equal to the model's probability for
the node's concept or any of its descendants. For example, given a
CIFAR-100 image classi�cation model as in Section 5.1, the value of
flower is the sum of the model's con�dence that the given image
is apoppy, rose, tulip , orchid , or sunflower . By propagating
the model's probabilities through the abstraction graph, the �tted
abstraction graph provides a measure of the model's con�dence in
a range of concepts across levels of abstraction.

So far, we have de�ned �tted abstraction graphs using an ML
model, but we can also use them to represent other types of encoded
abstractions. We can compute a �tted abstraction graph for any
function that maps dataset instances38 to a distribution over human
concepts$ . This function,5 : � 7! Rj$ j , is often the forward
function of a machine learning model, such as an image classi�er
(Section 5.1) or language generation model (Section 5.2). However,
as we demonstrate in Section 5.3, this function can also represent
the information encoded in a dataset, where5 maps clinical notes
38 to clinical codes>9, assigning each>9 a value based on whether
a human labeled the note with that code. In this case, the �tted
abstraction graphs represent the alignment between human labeling
patterns5 and expected medical abstractions� .

3.3 Measuring Abstraction Alignment
The model's �tted abstraction graphs support various alignment hy-
potheses, such as identifying concepts prone to misalignment and
determining the model's preferred level of abstraction. While there
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are many alignment metrics one could de�ne across the �tted ab-
straction graphs, we propose three metrics that have proven useful
in our alignment analysis of computer vision classi�cation models,
generative language models, and medical datasets (Section 5).

Abstraction Match.One way to measure abstraction alignment
is to measure how well the human abstractions account for the
model's uncertainty. If the model's confusion is substantially re-
duced by moving up a level of abstraction, then the model's behavior
is more abstraction-aligned than if it continues to be confused at
higher-levels of abstraction. While there are cases when the model's
confusion may acceptably not �t the human abstractions, such as
confusion on an image containing multiple objects, in aggregate
we expect the model's uncertainty to re�ect its abstractions � i.e.,
it will confuse concepts that it considers similar.

We measureabstraction match as the amount of the model's
decision entropy that is reduced by moving up a level of the abstrac-
tion graph. Given two levels (;6 and;� ), we compute the di�erence
in entropy,� ¹+ º = �

Í
E2+ Elog¹Eº [129], between the node values

+ := fE8: gat each level. The larger the entropy, the more confused
the model is across concepts at that level of abstraction. If the en-
tropy decreases substantially then the model's behavior aligns with
the abstraction mapping the low-level nodes to the higher-level
nodes. We aggregateabstraction match across a set of data in-
stances� , which can be a single instance, the entire dataset, or an
informative data subset.

" ¹;6• ;� º =
1

j� j

j� jÕ

8=1

� ¹»E8: 8 =: 2 ;� ¼º �� ¹»E8: 8 =: 2 ;6 ¼º (1)

Subgraph Preference.Another valuable metric is to compare the
values of di�erent �tted abstraction subgraphs. For instance, in Sec-
tion 5.2, we compare subgraphs that represent di�erent concepts
(e.g., any location vs.canadian locations) and di�erent levels of ab-
straction (e.g., concepts more speci�c thanjournalist to concepts
more general thanjournalist ). In aggregate, these comparisons
help us quantify and compare abstractions the model prefers.

We computesubgraph preference by measuring how often the
aggregate value of a node in one subgraph,B0, is larger than the
aggregate value of a node in another subgraphB1. This is an ex-
tension of the speci�city testing metric proposed by Huang et al.
[63], whereB0 represents the speci�c concept andB1 represents the
general concept. However, while the prior metric was designed to
test two concepts, abstraction alignment allows us to test a breadth
of concepts, including di�erent levels of abstraction, multiple simi-
lar concepts, and concepts related to di�erent abstractions. If the
model's outputs span multiple levels and many concepts in the
abstraction graph, we can either computesubgraph preference
using the nodes' values (as in Section 5.2.1) or use the unpropagated
model probabilities as the nodes' values (as in Section 5.2.2).

%¹B0 •B1 º =
1

j� j

j� jÕ

8=1

1»max¹»E8: 8 =: 2 B0 ¼º¡ max¹»E8: 8 =: 2 B1 ¼º ¼

(2)

Concept Co-confusion.Finally, theconcept co-confusion met-
ric allows us to measure how often a model assigns probability to
pairs of concepts. While concepts that are ancestors or descendants
of each other will de�nitionally have highconcept co-confusion ,
unrelated concepts with highconcept co-confusion are unrelated
human concepts that the model deems similar.

To computeconcept co-confusion for a pair of nodes, we com-
pute the entropy (� ) [129] of their values divided by the maximum
possible entropy for a pair of nodes. By computing the entropy, we
weight theconcept co-confusion by how confused the two nodes
are � e.g., concept co-confusion for nodes with values 0.4 and
0.6 will be higher than nodes with values 0.9 and 0.1 because the
model is more confused between the �rst pair of concepts. We com-
puteconcept co-confusion over the data� to identify repeated
confusion.

� ¹=: •=; º =

Í j� j
8=1 � ¹»E8:• E8;¼º

Í j� j
8=1 � ¹»0”5•0”5¼º

(3)

3.4 Formalizing Abstraction Alignment as
Representational Alignment

Representational alignment is a paradigm for measuring the sim-
ilarity of two systems' internal representations [136]. Here, we
de�ne abstraction alignment using the representational alignment
formalism from Sucholutsky et al. [136]. Abstraction alignment
compares machine learning model or dataset abstractions (system
� ) against formal human knowledge (system� ) across a set of
dataset instances (� ). We use the model's decisions (&) as a proxy
for its internal representations and a human abstraction graph (, )
as a proxy for internal human representations. We compute abstrac-
tion alignment by comparing& and, using the �tted abstraction
graphs (Section 3.2) and abstraction alignment metrics (Section 3.3).

Data� : We measure abstraction alignment across a set of evalu-
ation data� := f38g. In our experiments,� consists of images or
text, but abstraction alignment applies to any data modality.

System� : System� refers to either the machine learning model
or dataset under investigation. When� is a model, the focus is
on measuring the alignment of its behavior. When� is a dataset,
the goal is to evaluate the alignment of its labels. Accordingly,
5 : � 7! Rj$ j represents either the model's function mapping
inputs to its probability distribution over outputs or the function
mapping dataset instances to their labels.

� Measurements- : System� 's measurements,- 2 Rj� j � j $ j ,
is a matrix of model outputs or dataset labels obtained by
applying 5 to each data instance,- := »5¹31º• ”””• 5¹3j� jº¼.

� Embeddings&: Since abstraction alignment directly studies
the model outputs or dataset labels, we let& := - .

System� : System� represents formal human knowledge. Ac-
cordingly,6 : � 7! Rj� j maps the entire dataset� to a relevant
human abstraction graph� containing nodes# . It synthesizes
domain-speci�c human knowledge (represented by the data) into
core concepts and their relationships (represented by the graph).

� Measurements. : System� 's measurements,. 2 Rj� j , are a
human abstraction graph relevant to the data,. := 6¹� º = � .
For comparison with system� , we assume that the output
concepts are a subset of the human concepts$ � # in � .

� Embeddings, : Since. already represents human abstrac-
tions, we do not apply additional transformations (, := . ).
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Figure 3: The abstraction alignment interface visualizes a model's alignment with human abstractions. It displays the cumulative
�tted abstraction graph (A), aggregated abstraction match (B), concept distribution (C), and concept co-confusion (E). Interacting
with these panels or the query bar (D) updates the instance list (F) to show the �tted abstraction graphs of relevant inputs.

Alignment FunctionX¹&•, º: To compare the model outputs or
dataset labels (&) against the human abstraction graph (, ), we �rst
create a �tted abstraction graph by projecting the concepts and
probabilities in& onto the graph of concepts in, (Section 3.2).
Instead of providing a single quanti�er of alignment, this graph-
based comparison allows us to de�ne a family of metrics, measuring
multiple facets of alignment (Section 3.3).

4 The Abstraction Alignment Interface
We instantiate abstraction alignment in an interactive visual inter-
face (Figure 3) consisting of six interconnected components that
express the abstraction alignment metrics (Section 3.3) and �tted
abstraction graphs (Section 3.2). Users can interactively test align-
ment hypotheses by �ltering to individual concepts, selecting entire
graph regions, and querying for alignment patterns (Figure 4).

Cumulative Fitted Abstraction Graph.The cumulative �tted ab-
straction graph (Figure 3A) serves as an overview of the model's
�tted abstraction graphs and a visualization of the human abstrac-
tion graph. We compute it by summing the �tted abstraction graph

(Section 3.2) for every dataset instance such that a node's value in
the cumulative �tted abstraction graph is the sum of that node's
value across every model decision. We visualize it as a vertical
graph across the levels of abstraction, from the most abstract (root)
to the most speci�c concepts (leaves). To display meaningful visual
groupings, we color nodes and edges based on their level-1 ancestor.
Node radius and edge width re�ect the cumulative value assigned
to each concept. For instance, in Figure 3A, the thick red edge for
professional indicates that is assigned high con�dence in nearly
every model prediction. To minimize overlapping edges, we use a
recursive depth-�rst layout and sort children based on their value.
Hovering over a node reveals its name, value, and contributing
instances, clicking selects the concept and its relatives, and double-
clicking selects just that concept (Figure 4A). Upon selection, the
interface updates to display the relevant dataset instances.

Abstraction Match.The abstraction match component (Figure 3B)
instantiates theabstraction match metric (Eq. (1)), highlighting
abstractions the model has learned most e�ectively. For every
concept and level of abstraction, we compute the proportional
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Figure 4: Interacting with the abstraction alignment interface allows users to explore alignment hypotheses. Users can select a
concept (A�C), a concept pair (E), or de�ne an alignment query (D) to update the interface with relevant dataset instances.

abstraction match between that level and the next using every
dataset instance whose label is a descendant of the concept. For
example, for occupation prediction, the level-1abstraction match
for scientist is shown as the percent decrease in entropy by mov-
ing from level-2 to level-1 over all instances whose true occupation
is a descendant ofscientist (e.g.,physicist or astronomer ). The
abstraction match component is displayed as a nested horizontal bar
chart, with bars corresponding to concepts in the human abstraction
graph and their lengths representing their percentabstraction
match. Selecting a bar (Figure 4B) updates the interface, displaying
results for the set of instances that contributed to that concept's
abstraction match score.

Concept Distribution.The concept distribution component visu-
alizes how dataset labels are distributed across levels of abstraction.
For each concept in the human abstraction graph, its concept dis-
tribution value represents the number of dataset instances whose
label is a descendant of that concept. For example, in Figure 3C, the
concept distribution component shows that 1,238 instances in the
occupation prediction dataset are labeled as a type ofcommunica-
tor . Like abstraction match, the concept distribution is displayed as
a nested horizontal bar chart. Selecting a bar updates the interface
to display dataset instances labeled under that concept (Figure 4C).

Query.The query component allows users to search for types
of model behavior de�ned over the abstraction graph (Figure 3D).
We de�ne an query as an ordered list of layer-wise subqueries
that measure the distribution of values across nodes in that layer. A
layer's subquery can be a wildcard (* ) that matches any distribution,
an integer that de�nes the number of nodes in that layer with a non-
zero value, or a probability distribution (list) of numbers in the range
»0•1¼that de�nes the relative node scores in a layer. We incorporate
the modi�ers not (! ), greater than (>), and less than (<) to expand
query expressivity. A query matches an instance if every layer in
its �tted abstraction graph matches its corresponding subquery.
We can use the results of a query to understand how frequently an
alignment pattern occurs and what its common outcomes are. For
instance, given a human abstraction graph with three levels, we
can query for instances where the model distributes its con�dence
over multiple leaf nodes in the same subgraph as[*, [1], >1]
(Figure 4D). In the interface, we provide informative pre-de�ned
queries in natural language to help users get started with querying.

Concept Co-confusion.The concept co-confusion component in-
stantiates theconcept co-confusion metric (Eq. (3)) to reveal
pairs of concepts that the model commonly confuses (Figure 3E).
It is visualized as a list of concept pairs, sorted by theirconcept
co-confusion . Each concept in a pair is colored based on its level-1
concept and shown above a sparkline [148] representing the pair's
concept co-confusion . Users can �lter the list of concept pairs
based on attributes of an individual concept (i.e., its height, depth,
name, and if it is a label) or the concept pair (i.e., if they are con-
nected, share a parent, or share an ancestor) (Figure 4E). Selecting
any pair updates the rest of the interface to show instances that
contributed to that pair'sconcept co-confusion .

Instance List.Finally, to allow users to drill down into the model's
alignment on individual decisions, the abstraction alignment in-
terface displays a �tted abstraction graph (Section 3.2) for every
dataset instance (Figure 3F). Each �tted abstraction graph is dis-
played as a nested horizontal bar chart, where a bar represents
a node in the �tted abstraction graph and its length represents
that node's value. Bars are colored based on the level-1 concept
and the root bar shows a summary of the bars below it. The �tted
abstraction graphs are displayed next to the instance text or image
and its true labels. To visually indicate salient areas of the �tted
abstraction graph, we bold the text corresponding to the instance's
labels and any of its direct relatives. When selections occur in other
interface elements, the instance list updates to display the relevant
instances. We display summary statistics above the list, showing
the number of instances selected and, in classi�cation settings, the
proportion of them that are correctly and incorrectly classi�ed.

5 Evaluative Case Studies with Domain Experts
By externalizing formal human knowledge as an abstraction graph,
abstraction alignment expands current alignment work�ows from
internalized comparison to iterative hypothesis testing. To evaluate
this shift in perspective, we emulate three real-world alignment
tasks across computer vision, natural language, and medicine. First,
in Section 5.1, we apply abstraction alignment to interpret an image
classi�cation model, �nding that it expands interpretation from
narrow questions about why a model made a speci�c decision to
broad explorations of the human concepts it has learned. Next,
in Section 5.2, we collaborate with researchers to benchmark the
speci�city of language model responses, revealing that abstraction
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Table 1: We evaluate abstraction alignment through case
studies with seven experts in language model speci�city (Ÿ5.2)
and medical dataset analysis (Ÿ5.3).

Language Model Speci�city Case Study (Ÿ5.2)
ID Title A�liation Role

P1 Professor University Tests model speci�city
P2 Research Scientist Tech Company Tests model speci�city
P3 Project Manager Tech Company Builds LLM benchmarks

Medical Dataset Analysis Case Study (Ÿ5.3)
ID Title A�liation Role

P4 Medical Coder Medical Center Codes clinical notes
P5 Medical Coder Medical Center Codes clinical notes
P6 ICD Manager Health Org. Oversees ICD usage
P7 ICD Manager Health Org. Oversees ICD usage

alignment expands their conventional benchmarks of isolated pair-
wise comparisons to more comprehensive comparisons across the
entire space of potential outcomes. Finally, in Section 5.3, we lever-
age abstraction alignment earlier in the ML pipeline, using it with
healthcare professionals to assess the human alignment of a medi-
cal dataset, revealing discrepancies between medical abstractions
and their real-world usage.

Study Method.To evaluate how abstraction alignment supports
real-world alignment analysis, we collaborate with seven domain
experts across two case studies: language model speci�city (Sec-
tion 5.2) and medical dataset analysis (Section 5.3). We conducted
in-depth, semi-structured interviews with each expert to assess
how abstraction alignment in�uenced their analysis. We began
with questions about their domain expertise, alignment work�ows,
and desired outcomes, such as�Tell me about your role as a [title]?�
and�How do you currently measure alignment in [case study task]?�.
Next, we introduced the abstraction alignment interface (Section 4)
using tasks and datasets representative of their domain. Finally, we
prompted experts to think aloud as they engaged with abstraction
alignment to identify ways the model or dataset was aligned or
misaligned with their domain knowledge. This approach allowed us
to understand experts' current processes, observe how abstraction
alignment functioned in context, and assess its potential to address
experts' alignment goals. We discuss study limitations in Section 6.

We targeted expert participants to understand how abstraction
alignment could impact real-world domains. To identify experts,
we reached out to authors of relevant literature, attendees of spe-
cialized conferences, and LinkedIn professionals with applicable
expertise. We purposively sampled [23] seven participants, ensuring
they had deep familiarity with their case study � language model
participants regularly tested language models and medical dataset
participants had extensive experience with medical codes (Table 1).

We conducted six video interviews each lasting 30�60 minutes
(P6 and P7 opted to interview together as colleagues). Our institu-
tion deemed our study exempt from full IRB approval, and partic-
ipants received $50 gift cards. With consent, all interviews were
recorded, resulting in 223 minutes of audio/video data and tran-
scripts. We conducted a thematic analysis, reviewing recordings

and transcripts to code key observations, such as cases where par-
ticipants recognized an alignment/misalignment (e.g., the dataset is
missing domain-speci�c abstractions), expressed ways abstraction
alignment facilitated/hindered their analysis (e.g., it replicated their
existing experiment design), or identi�ed an insight that led them to
hypothesize about the downstream impact (e.g., the model is overly
speci�c at the expense of correctness). After analyzing recordings
individually, we grouped codes into higher-level themes, and used
them to structure the results in Section 5.2.1 and Section 5.3.

5.1 Interpreting Image Model Behavior
A common interpretability task is understanding a model's mis-
takes; however not all mistakes are equally problematic. For in-
stance, in an autonomous driving task, mistaking atruck for a bus
might be harmless, whereas models that mistake atruck for the
sky have, unfortunately, caused real-world accidents [81, 144]. We
are more likely to forgive the �rst mistake because it more closely
aligns with our human abstractions �trucks andbusesare both
vehicles and we treat them similarly while driving. However, the
latter mistake could indicate more severe model generalizability
issues where the model's abstractions do not align with accepted
human reasoning (i.e.,trucks and thesky are vastly di�erent
concepts that require di�erent interactions).

Applying abstraction alignment to this setting, we �nd that it
helps interpret model behavior and di�erentiate the severity of a
model's mistakes by expanding the number and complexity of con-
cepts we use to characterize model decisions. In particular, we use
abstraction alignment to interpret a ResNet20 [54] computer vision
model trained on CIFAR-100 [77]. We use the CIFAR-100 class and
superclass structure as the human abstraction graph, as it maps
low-level classes, liketruck , into higher-level concepts, likevehi-
cles [77]. The result is a human abstraction graph with 121 nodes
across three levels of abstraction. We compute each test image's �t-
ted abstraction graph by applying a softmax to the model's outputs
and propagating them through the human abstraction graph.

5.1.1 Interpreting Model Decisions.Analyzing the abstraction align-
ment of an individual instance can indicate why the model made
a particular decision. An instance's �tted abstraction graph repre-
sents how the model made its decision on that instance and the
conceptual similarity of other options it considered. For example, in
Figure 1, we show three CIFAR-100 test images, their �tted abstrac-
tion graphs, and the model's output probability. The probability
distribution for each image follows an approximately60•20•20
split, so we might assume the model is similarly confused about
each image. However, the �tted abstraction graphs reveal that the
model's abstraction alignment di�ers signi�cantly across images.
In the top example, the model's probability is split between three
classes within the same concept, indicating the model is con�dent
the image is atree and simply unsure of the species. Whereas, in
the bottom instance, the model assigns probability to three distinct
high-level concepts, includingfruit and vegetables andlarge
omnivores and herbivores , indicating that it is very confused
about this image or has learned a relationship that does not align
with human expectations (e.g., a color relation whereelephants
andmushroomsare bothgray ). In a real-world setting, we may
be willing to overlook a model's abstraction-aligned errors (like in
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Figure 5: Abstraction alignment o�ers insights into the behavior of an image classi�cation model. Querying alignment patterns
distinguishes benign lack-of-speci�city errors from more problematic misalignments (A), and analyzing abstraction match
identi�es which human concepts the model aligns with, highlighting potential failure cases (B).

the top image) and may want to penalize the model for unaligned
confusion even if its answer is correct (as in the bottom image).

Analyzing the abstraction alignment of an instance can also re-
veal places where human abstractions could be updated to better
�t the modeling task. For instance, analyzing the �tted abstraction
graph for the middle image in Figure 1 shows that the model splits
its output probability between three classes:shark , whale , and
dolphin . Confusion across these three classes may seem abstrac-
tion aligned because they arelarge ocean animals . However,
our human abstraction graph splits them into separate high-level
concepts because it is based on biological properties, wheresharks
arefish andwhales anddolphins area�atic mammals . While
the biological principles that separatefish anda�atic mammals
(e.g., gills or blow holes) are important to zoology, they are visually
subtle and unlikely to come across in low-resolution CIFAR-100
images. Given the model only has access to images, it makes sense
that it could learn a visual abstraction wheresharks andwhales
are closely related. If our use case requires the model to learn bi-
ological abstractions, we might consider training on a di�erent
dataset with images that visually distinguish biological properties
or contain additional metadata about the animal. However, if we
are only interested in the model's visual alignment, we may de�ne
a new human abstraction graph based only on visual similarity.

5.1.2 Uncovering Global Pa�erns in Model Behavior.Analyzing
abstraction alignment across many model decisions can identify
recurring patterns of misalignment that can impact the model's
generalizability. To analyze abstraction alignment across an entire
dataset, we measure how often a model exhibits a particular type of
abstraction alignment/misalignment. We de�ne types of abstraction
alignment as queries describing the number of nodes the model
considers at each level and how it distributes its con�dence across
nodes. To measure how often the model's decisions align with

human abstractions we query for instances where the model is
con�dent in a single class or becomes con�dent in a single high-
level concept. In Figure 5A, we see these instances represent nearly
half of the model's decisions but only18%of model mistakes. This
means most of the model's mistakes are not harmless low-level
errors, but the result of confusion at higher levels of abstraction.
Digging into this further, we query for instances where the model
considers at least four disjoint concepts and �nd that almost a
quarter of all instances and half of mistakes fall into this category.

5.1.3 Identifying Conceptual Alignment.Given the model and hu-
man abstractions seemingly con�ict, we can use abstraction align-
ment to identify which human abstractions the model has learned.
To do so, we analyze the model'sabstraction match view (Fig-
ure 5B) and �nd that thepeopleandtree abstractions resolve a
large proportion of the model's uncertainty, indicating that the
model has learned those abstractions. For instance,74%of the
model's uncertainty on images ofbabies, boys, girls , men, and
women is resolved at the parent conceptpeople. While our model
only achieves67”7%test accuracy, seeing that it has learned some
human abstractions may increase our trust that its confusion in
these categories is harmless, particularly if our setting does not
require �ne-grained classi�cations.

Our abstraction alignment metrics also reveal areas where the
model is misaligned with human abstractions. For instance, the
model's uncertainty is not accounted for by abstractions likeve-
hicles 2 nor does it appear to learn animal categorizations like
non-insect invertebrates andmedium mammals. In both cases,
we might consider these results to be acceptable model perfor-
mance in light of ill-�tting human abstractions. In particular, the
CIFAR-100 hierarchy arti�cially restricts each high-level concept to
contain exactly 5 children � a constraint that produces two nodes
for vehicles that arbitrarily distinguish their children rather than
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meaningfully capture abstracted patterns. In contrast, although the
animal categories are semantically meaningful, they re�ect bio-
logical concepts like size (medium) and reproduction (mammals)
that are seemingly hard for a model to learn from 32x32 images. If
learning accurate biological abstractions are important for our task,
then we may prefer to train on an alternate dataset that more pre-
cisely expresses these characteristics; on the other hand, if learning
visual abstractions is acceptable, we may update our human abstrac-
tion graph to better re�ect what can be learned from the data (i.e.,
categorizing animals based on visual similarity). With abstraction
alignment we have revealed the model's learned abstractions, cases
of misalignment with human expectations, and mitigation strate-
gies to improve model alignment and existing human abstractions.

5.2 Benchmarking Language Model Speci�city
with ML Researchers

An essential alignment task for generative language model re-
searchers is ensuring models produce outputs at an appropriate
level of abstraction [70, 162, 166, 167]. For instance, given the input
�What is Claude Monet's profession?�, we would prefer a model that
gave a speci�c answer, likepainter , instead of an overly general
answer, likeworker . On the other hand, if the model is unsure
of Monet's exact profession, then we'd prefer that it outputs a
more general answer it is con�dent in, likeartist , than a spe-
ci�c but possibly incorrect guess, likephotographer . Currently,
researchers assess language model speci�city using benchmark
datasets containing input prompts paired with multiple correct
outputs at di�erent levels of abstraction [63, 91, 130, 161]. However,
these benchmarks limit researchers to testing a small number of
possible answers across a few levels of abstraction (typically 2�4).
This can result in an incomplete understanding of model accuracy
since the dataset may inadvertently over penalize answers that
humans consider synonymous but are not included in the labels.
Moreover, since they dichotomize between a set of correct answers
and all other incorrect answers, they do not provide researchers
with insight into how wrong a particular mistake is (e.g.,photog-
rapher is a better guess for Monet's profession thancowboy).

In this case study, we evaluate abstraction alignment's ability
to improve language model speci�city testing through interactive
analysis with experts (Section 5.2.1) and quantitative benchmarks
(Section 5.2.2). We apply abstraction alignment to measure the speci-
�city of �ve BERT [ 34], RoBERTa [88], and GPT-2 [117] language
models. We evaluate each model on the S-TEST [63] speci�city
benchmark dataset, containing sentence prompts for masked to-
ken prediction of the subject's occupation, location, and birthplace.
Each of the prompts is labeled with a corresponding speci�c answer
and general answer. For instance the prompt �Lake Louise Ski Resort
is located in [MASK]� is paired with the speci�c answer �Alberta�
and the general answer �Canada� [ 63]. To create �tted abstraction
graphs, we map the model's output distribution over every possible
answer to words in a lexical graph. We create the human abstrac-
tion graph by mapping the S-TEST speci�c answers to nodes in the
WordNet DAG [44, 90]. We compute edges between nodes using
WordNet's hypernym/hyponym and holynym/meronym functions,
creating an abstraction graph of precise and general answers related
to the task. Since WordNet is an extensive lexical graph, it contains

many concepts relevant to occupations and locations, making it a
valuable proxy for human lexical knowledge on these tasks. For
example, it expands occupation speci�city analysis from two con-
cepts at two levels of abstraction to over 1,500 concepts across 9
levels of abstraction.

5.2.1 Interactively Analyzing Model Specificity with NLP Experts.To
study how abstraction alignment impacts researchers' perspectives
on language model speci�city, we collaborate with three language
model experts (Table 1). All three experts have substantial experi-
ence benchmarking and evaluating language models, with P1 and
P2 specializing in speci�city analysis. For these experts, speci�city
testing is critical for developing a comprehensive understanding of
model behavior. By expanding from a single ground-truth answer to
a range of acceptable answers, speci�city testing provides experts
with a more nuanced assessment of model accuracy. It helps them
develop a mental model of the model's behavior and estimate how
it would behave on future inputs. Despite these bene�ts, experts
acknowledge that speci�city testing is currently limited to a small
number of acceptable answers across a few prede�ned levels of
abstraction, restricting their ability to thoroughly evaluate model
behavior against the full range of correct answers and abstraction
levels observed in real-world language use.

A key speci�city alignment task for experts was analyzing the
model's preferred level of abstraction, so they could �ag models
whose outputs were uselessly general or misleadingly speci�c. Ex-
perts' current speci�city benchmarks contain a set of correct an-
swers at various levels of abstraction, allowing them to test how
often the model prefers a speci�c answer over a more general one.
However, by propagating model con�dence through the abstraction
graph, abstraction alignment broadened experts' perspectives on
speci�city testing. Analyzing the con�dence distributions across
all nine abstraction levels in the �tted abstraction graphs, users
observed that small probabilities on speci�c answers often summed
to substantial con�dence in more general responses and there were
many cases where they could �elicit a di�erent prediction by ag-
gregating probabilities on all these very speci�c [answers]� (P1). For
example, in Figure 6A, experts' traditional speci�city benchmark
would have penalized the model for incorrectly predicting Push
Button is aphotographer since it is not a synonym for the correct
answer,composer. But, by propagating the probabilities, abstrac-
tion alignment revealed that the model was conceptually correct
just non-speci�c � i.e., all of its probability was assigned to types
of artists . This insight demonstrated that the model's understand-
ing was more nuanced than a traditional speci�city benchmark
could capture. For P3, viewing the results through the abstraction
alignment lens was �a much stronger claim for both speci�city and
categorization than just [comparing] to a [few] words.�

Experts also found that abstraction alignment allowed them test
a range of hypotheses about model speci�city that are not possible
with current benchmarks. During their analysis, experts often gener-
ated questions about the model's alignment, such as whether there
are dissimilar professions that the model thinks are highly related
(P2). While current speci�city benchmarks only consider a set of
synonyms against all other incorrect options, abstraction alignment
supported users in testing these alignment hypotheses by measur-
ing the conceptual distance between model outputs. For example, to
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Figure 6: Abstraction alignment helps ML researchers better understand the speci�city of generative language models, revealing
the model's tendency to generate speci�c outputs at the expense of correctness (A), confuse seemingly unrelated concepts (B),
and overrely on one particular concept (C).

test their hypothesis, P2 examined theconcept co-confusion of
occupation pairs that did not share an ancestor (Figure 6B). While
they found it acceptable that the model assigned probability to
co-occurring occupations, likejournalist and photographer ,
they were surprised to see highconcept co-confusion between
rare pairs of professions, such aslawyer and painter . Experts
worried that �these co-occurrences must [be coming] from the data
distribution� (P1), suggesting more serious issues with the underly-
ing training data that could cause �models trained on the same data
to have similar co-occurrences� (P1). Relatedly, P3 identi�ed that
professional was assigned some probability across all 4,994 in-
stances (Figure 6C), hypothesizing that it was due to overuse of the
word professional in the dataset outside of an occupation context,
such as �[person] is a professional�. Since these �ndings suggested
dataset artifacts were impacting the model's alignment, P2 wanted
to con�rm that these correlations existed in the dataset, and if so,
� inform people who create data [that they] should be careful about
these co-occurrences, they cause hallucinations�. As a result, experts
found that abstraction alignment expanded the types of speci�city
tests they perform, from narrow questions about a model's accuracy
to broad hypotheses about the model's human-alignment.

Finally, beyond analyzing model speci�city, experts hypothe-
sized that abstraction alignment could improve model generation.
As P1 described, even �when a model is not con�dent, it will still pro-
duce a very speci�c answer, but [you know its not con�dent because]
when you sample multiple responses, you will get di�erent answers.�
In response to this phenomena, some model generation methods im-
prove accuracy by relaxing the requirement for speci�city through
repeatedly sampling the model's output and identifying consistent
details across the results [161]. However, P1 hypothesized that ab-
straction alignment could be an alternative method for improving
model accuracy. Instead of selecting the model's most probable
answer (which is likely overly speci�c and incorrect), they were
interested in using the �tted abstraction graphs to select the most
speci�c concept above a particular con�dence threshold. For ex-
ample, in Figure 6A, instead of generating the model's most likely

answer,magician (which is incorrect), with abstraction alignment,
they could generate a higher-level and higher-con�dence answer,
artist (which is correct). This example highlights the versatility
of abstraction alignment, showing that by viewing models through
this lens, experts not only generated new hypotheses for speci�city
analysis but also uncovered novel strategies for model generation.

5.2.2 �antitatively Comparing Model Specificity.While interac-
tively exploring abstraction alignment expanded experts' qual-
itative analysis, it also improves traditional quantitative speci-
�city benchmarks by generating a more diverse range of testable
hypotheses. Existing speci�city benchmarks are limited to com-
paring the model's probability across a small set of correct an-
swers [63, 91, 130, 161]. As a result, existing speci�city benchmarks,
like S-TEST, only measure the model's preference between one
speci�c and one general answer [63]. Instead, by leveraging human
lexical abstractions, abstraction alignment expands the number of
possible answers and represents the relationships between answers.
Thus, it enables us to test a broader range of speci�city questions,
such as how often the model prefers any speci�c answer to any
general answer or whether it prefers a correct answer at any level
of abstraction over an incorrect but task-speci�c answer.

To quantify speci�city, we usesubgraph preference (Eq. (2))
to compare the model's preference for answers in di�erent regions
of the lexical abstraction graph (Table 2). As a baseline, we recreate
Huang et al. [63]'s speci�city metric by comparing the model's prob-
abilities in the dataset-de�ned speci�c and general labels (%¹B•6º).
Next, we expand this metric to test speci�city across additional
words and levels of abstraction. Instead of testing one speci�c and
one general answer, we compare all answers more speci�c than the
speci�c label (speci�c label and its descendants) to all answers more
general than the speci�c label (speci�c label's ancestors) (%¹B#•B" º).
Finally, we extend these metrics even further, testing whether the
model prefers a correct answer at any level of abstraction to an
incorrect but task-related answer by comparing all answers related
to the speci�c label to all task-related words (%¹Bl • Cº).
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