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Error Bars Considered Harmful:
Exploring Alternate Encodings for Mean and Error

Michael Correll Student Member, IEEE, and Michael Gleicher Member, IEEE

(a) Bar chart with error bars: the

height of the bars encodes the sample

mean, and the whiskers encode a 95% t-

confidence interval.

(b) Modified box plot: The whiskers are

the 95% t-confidence interval, the box is

a 50% t-confidence interval.

(c) Gradient plot: the transparency

of the colored region corresponds to

the cumulative density function of a t-

distribution.

(d) Violin plot: the width of the col-

ored region corresponds to the probabil-

ity density function of a t-distribution.

Fig. 1. Four encodings for mean and error evaluated in this work. Each prioritizes a different aspect of mean and
uncertainty, and results in different patterns of judgment and comprehension for tasks requiring statistical inferences.

Abstract— When making an inference or comparison with uncertain, noisy, or incomplete data, measurement error and confidence
intervals can be as important for judgment as the actual mean values of different groups. These often misunderstood statistical
quantities are frequently represented by bar charts with error bars. This paper investigates drawbacks with this standard encoding,
and considers a set of alternatives designed to more effectively communicate the implications of mean and error data to a general
audience, drawing from lessons learned from the use of visual statistics in the information visualization community. We present
a series of crowd-sourced experiments that confirm that the encoding of mean and error significantly changes how viewers make
decisions about uncertain data. Careful consideration of design tradeoffs in the visual presentation of data results in human reasoning
that is more consistently aligned with statistical inferences. We suggest the use of gradient plots (which use transparency to encode
uncertainty) and violin plots (which use width) as better alternatives for inferential tasks than bar charts with error bars.

Index Terms—Visual statistics, information visualization, crowd-sourcing, empirical evaluation

1 INTRODUCTION

For judgments and comparisons in real world settings, the uncertainty
associated with the data can be as important as the difference in data
values. Big differences in data values may not be significant or in-
teresting if there is too much error: for instance too much noise, un-
certainty, or spread. Techniques from inferential statistics (including
comparison of interval estimates, null hypothesis significance testing,
and Bayesian inference) address this issue, but can be complicated,
counter-intuitive, or equivocal. Careful design could produce visu-
alizations which convey the general notion of varying levels of error
even when the viewer does not have a deep statistical background.

The most common encoding for sample means with associated er-
ror is a bar chart with error bars. Despite their ubiquity, many fields
(including perceptual psychology, risk analysis, semiotics, and statis-
tics) have suggested severe shortcomings with this encoding, which
could result in decisions which are not well-aligned with statistical ex-
pectations. While alternate encodings for mean and error have been
proposed, to our knowledge none have been rigorously evaluated with
respect to these shortcomings.
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In this paper we investigate how differences in the presentation of
mean and error data result in differing interpretations of viewer confi-
dence and accuracy for judgment tasks. We investigate the drawbacks
of the standard encoding for mean and error, bar charts with error bars.
We investigate standard practices for depicting mean and errors. We
present and evaluate alternative encoding schemes for this data (see
Fig. 1). Lastly, we present the results of a crowd-sourced series of
experiments that show that bar charts with error bars, the standard
approach for visualizing mean and error, do not accurately or con-
sistently convey uncertainty, but that changes in design can promote
viewer judgments and viewer certainty that is more in line with statis-
tical expectations, even among a general audience.

Contributions: We present a series of issues with how the standard
encoding for mean and error, bar charts with error bars, are interpreted
by the general audience. We adapt established encodings for distribu-
tional data — violin plots[13] and gradient plots[17] — for tasks in
inferential statistics. We validate the performance of these encodings
with a series of crowd-sourced experiments.

2 BACKGROUND

Issues with the presentation of mean and error, especially with bar
charts with error bars, have been studied by multiple fields, includ-
ing psychology, statistics, and visualization. We present a summary of
these findings. We provide evidence that, while visualizations of mean
and error are valuable, care must be taken in how they are designed and
presented, especially to a general audience. We show with an analysis
of practices in information visualization and elsewhere that audiences
with a wide range of expected statistical backgrounds are nevertheless
presented with mean and error data in similar ways. Despite the draw-
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backs we present, we confirm that bar charts with error bars are the
modal encoding for presentation of this sort of data in the information
visualization community.

2.1 Visualization of Mean and Error
Mean and error, as in confidence intervals or error bars, has been pro-
posed as a solution for some of the perceived deficiencies in traditional
significance testing [25], both for pedagogy and in analysis [27]. Un-
fortunately, while inferential statistics might offer techniques for ap-
proaching complex problems, human reasoning (especially in matters
of statistics and probability) operates via a series of heuristics that may
or may not arrive at the “right” answer. Tversky and Kahneman [32]
offer examples of systematic errors these heuristics generate for de-
cision problems based on uncertain data. An example as applied to
the information visualization community is the “fallacy of availabil-
ity” — we remember dramatic or remarkable events with greater ease
than ordinary ones, skewing our perception of base rates. For exam-
ple, a technique which provides good results in most cases but fails
catastrophically for a particular case might be seen as more unreliable
than a technique that has more frequent, but less severe, failures. In-
bar [16] provides evidence that how we visually encode uncertainty
and probability can work to “de-bias” data which would ordinarily fall
prey to an otherwise inaccurate set of heuristics (by comparison to an
outcome maximizing classical statistical view) . Designing visualiza-
tions to support decision-making and perform de-biasing is not trivial,
and how the task is laid out in text can conflict with attempts to de-
bias [23]. Even so, the visual presentation of uncertainty can promote
better understanding than textual presentation [20].

Error bars, the common way of encoding uncertainty or error, have
a number of additional biases, some in concert with other common en-
codings types. One is ambiguity — an error bar can encode any num-
ber of values, from range to standard error. In many cases the error bars
are not explicitly labeled, or are labeled in text that is visually distant
from the chart in question. This ambiguity, combined with widespread
misconceptions about inferential statistics, means that even experts in
fields that frequently use error bars have difficulty perceiving how they
are connected to statistical significance, estimating p values that are in-
correct by orders of magnitude [2]. For error bars with bar charts, the
most common combination of mean and error, since bars are large,
graphically salient objects that present the visual metaphor of “con-
taining” values, values visually within the bar are perceived as likelier
data points than values outside of the bar [24]. Lastly, by presenting
error bars as discrete visual objects, designers emphasize an “all or
nothing” approach to interpretation —values are either within the bar
or they are not. By only showing information about one kind of sta-
tistical inference, viewers are unable to draw their own conclusions
for their own standards of proof, exacerbating existing problems with
null-hypothesis significance testing [6, 18, 28].

2.2 Mean and Error in General Practice
Since mean and error are critical for decision-making based on un-
certain data, different communities have codified different approaches
to communicating these values, while highlighting the importance of
communicating both mean and error to audiences. This is true of both
the psychology community, where the audience is assumed to have
at least a basic understanding of statistical inference, and also in the
journalism and mass communication community, where statistical ex-
pertise cannot be assumed.

The American Psychological Association recommends that point
estimates “should also, where possible, include confidence intervals”
or other error estimates. Furthermore, they should allow the reader
to “confirm the basic reported analyses” and also to “construct some
effect-size estimates and confidence intervals beyond those supplied”
[1]. More recently, the APA has pushed for the greater use and report-
ing of intervals, as opposed to significance testing [34].

The Associated Press also recommends reporting the margin of er-
ror in polling data (in practice, the 95% t-confidence interval) [11].
Since p-values are not common concepts for a general audience, they
recommend stating that one candidate is leading if and only if the

the lead is greater than twice the margin of error (in practice this is
an α value of less than .01). The existence of these guidelines (and
the similar reporting and summarization of model and measurement
uncertainty in popular, general audience websites such as http://
fivethirtyeight.com and http://www.pollster.com),
indicates that the display and interpretation of inferential statistics is a
problem that extends beyond the academic community.

2.3 Mean and Error in InfoVis
The information visualization community contains members with het-
erogeneous backgrounds who have different internal statistical prac-
tices but nonetheless must report inferential statistics in a mutually
intelligible way. We believed that the visualization of mean and error
within the community would offer both an example of statistical com-
munication meant for general audiences, as well as provide a diverse
set of potential visual designs for communicating statistics. To that end
we analyzed the visual display of sample mean and error in the past
proceedings of accepted IEEE VisWeek papers in the InfoVis track,
2010-2013. In the 163 papers available, 46 had some visual display of
sample means (usually in the context of evaluating the performance of
a new visualization tool). Of these 46 papers, 36 (approx. 78%) used
error bars to encode some notion of error or spread. The modal en-
coding was a bar chart with error bars, which occurred in 26 (approx.
56%) of the papers. Boxplots were also common (7 papers, approx.
15%), as were dot plots with error bars (5 papers, approx. 10%).

There was a heterogeneous use of error bars across papers. In many
cases the error bars were unlabeled (22 papers, approx. 48%). This is
despite the fact that error bars can be used to represent many different
quantities. In the papers we found, error bars were labeled as range,
95% confidence intervals, 80% confidence intervals, standard error,
standard deviation, or 1.5× the interquartile range (IQR). Should one
wish to use these error estimates to estimate statistical significance (a
practice which is controversial [28]), each of these interpretations of
error would necessitate a different heuristic for “inference by eye” —
that is, a different way to determine the relative significance of dif-
ferent effects [9]. Given this ambiguity, a common practice was to
denote statistically significant differences with an asterisk; however as
the number of sample means increases, the number of glyphs required
to explicitly encode all statistical significant pooled sample t-tests in-
creases exponentially. Even if the number of comparisons is small, the
link between graphical overlap of confidence intervals and the results
of significance testing decays, and the probability of Type I errors in-
creases (cf. techniques such as the Benferroni correction that attempts
to correct for the increased likelihood of Type I errors as the number
of comparisons increases).

3 ALTERNATIVES TO BAR CHARTS WITH ERROR BARS

There are many potential designs for mean and uncertainty. Poten-
tially any visual channel can be combined with another encoding to
unite a “data map” and an “uncertainty map” [21]. We chose two po-
tential encodings for this data based on current practices for displaying
probability distributions, tweaked for the specific use-case of inferen-
tial statistics: the gradient plot (which uses α transparency to encode
uncertainty), and violin plots (which use width). Neither encoding is
particularly common in the information visualization community —
only a version of the violin plot, in the form of a vertically-oriented
histogram, was found in our search of InfoVis conference papers. We
believe this rarity is beneficial for this problem setting, since exist-
ing semantic interpretations might interfere with our intended use and
meaning of these encodings for this problem (which is similar to, but
sufficiently different from the standard visualization problem of visu-
alizing distributions). That is, we do not want viewers to confound
visualizations of the distribution of error and the distribution of data.

Processing code for generating all of the plots seen in the paper is
available in the supplementary materials.

3.1 Design Goals
The recommendation of style manuals designed for the presentation of
results to diverse audiences, combined with the heterogeneity of real
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Fig. 2. The alternate plots we propose for encoding mean and
error. From left to right gradient plots, violin plots, and modified
box plots. The colored bars on the right are standard error, a
95% t-confidence interval, and a 99% confidence interval, for
reference.

world uses of mean and error data, led us to formulate a series of goals
for any proposed encoding of mean and error:

• The encoding should clearly present the effect size — that is,
accuracy at visualizing error should not come at the expense of
clear visualization of the mean.

• The encoding should promote “the right behavior” from view-
ers (such as refraining from judgment if means are dissimilar but
error is very high), even if the viewers lack extensive statisti-
cal training. Likewise, viewer confidence in judgments ought to
correlate with power of the relevant statistical inferences. These
effects should apply to different problem domains and framings.

• The encoding should afford the estimation or comparison of sta-
tistical inferences that have not been explicitly supplied.

• The encoding should avoid “all or nothing” binary encodings —
the encodings should permit different standards of proof other
than (for instance) an α of 0.05. This will likely require en-
codings which display confidence continuously, rather than as
discrete levels.

• The encoding should mitigate known biases in the interpretation
of error bars (such as within the bar bias, and mis-estimation of
error bars due to the presence of central glyphs). This will likely
require encodings which are visually symmetric about the mean.

To fulfill these goals we adapted two existing encodings (usually
used for visualizing distributional information), violin plots and gradi-
ent plots, for use in inferential tasks. Box plots, as a standard encoding
for distributional data, are discussed as a separate case. We believe that
these encodings fulfill the design goals presented above. In addition,
since they both adapt general techniques for the visualization of distri-
butions, they can be adapted to many different error statistics beyond
the t-confidence intervals presented here.

3.2 Gradient Plots
Jackson [17] argues for using color to encode data such as probability
distributions functions (pdf). In that technique, and in similar tech-
niques, a sequential color ramp is used to encode likelihood or density,
usually varying the α , brightness, or saturation. Low saturation and
low α values have a strong semiotic connection with uncertainty [22],
and thus are a commonly used visual metaphor for conveying uncer-
tain data [10]. Recent research has shown that using gradients in this
manner affords robust understandings of uncertainty even for general
audiences [30]. We call this specific technique a “gradient plot.”

Our version of the gradient plot differs slightly from the standard
approach, which is to take the density trace and map each value to a
color. We wished to keep some connection with the discreteness of
error bars, and so all values within the 95% two-tailed t-confidence

interval are fully opaque. Outside of the margin of error, the α value
decays with respect to the cumulative probability for the absolute value
of the y coordinate based on an underlying t-distribution. That is, the
α value of a particular y coordinate is linearly related to the size of the
t-confidence interval needed to reach that value — a 95% confidence
interval is fully opaque, and the (fictional) 100% confidence interval
would be fully transparent. In practice, since the inverse cumulative
probability function decays so rapidly, there is a block of solid color
surrounded by “fuzzy” edges. Figure 2 shows a sample gradient plot in
more detail. Viewers are not very proficient at extracting precise α val-
ues, and perhaps can only distinguish only a few different “levels” of
transparency [3]. Issues with interpreting α values are exacerbated by
the non-standard ways in which tone and transparency are reproduced
between displays. Nonetheless, we believe that this imprecision is a
“beneficial difficulty” [14] as it discourages artificially precise com-
parisons where there is a great deal of uncertainty associated with the
data. In general we believe the gradient plot is superior to the standard
bar chart with error bars for a number of reasons:

• A visual metaphor that aligns with expected behavior: minimal
transparency (and so uncertainty) within the 95% confidence in-
terval, quickly decaying certainty outside of that region. This
extends to comparison: if two samples are very statistically sim-
ilar than their “fuzzy” regions will overlap.

• Use of a continuous but imprecise visual channel provokes a
“willingness to critique” [35] in a way that discrete but precise
encodings or styles do not.

• Visual symmetry about the mean, mitigating “within-the-bar”
bias (the tendency to see values visually contained by the bar
chart as being likelier than values outside the bar).

3.3 Violin Plots

Hintze & Nelson proposed “violin plots” for displaying distributional
data [13]. In the canonical implementation a density trace is mirrored
about the y axis, and then a box plot is displayed inside the region,
forming a smooth, violin-like shape with interior glyphs. “Bean plots”
replace the interior box plot with lines representing individual obser-
vations [19]. In either case the additional level of detail affords a quick
judgment about the general shape of the distribution (cf. a unimodal
and a bimodal distribution which might have identical box plots but
would have vastly different violin plots). Width and height are both
positional encodings of distributional data: position as a visual chan-
nel has higher precision than color for viewer estimation tasks. Ibrekk
& Granger [15] confirm this inequality for the case of violin plots of
probability distributions specifically.

Our version of the violin plot for inferential statistics discards the
interior glyphs and encodes the probability density function rather than
the sample distribution. We believe that the distribution used to make
inferences is more valuable for these tasks than the distribution of the
data themselves. Figure 2 shows a sample violin plot of the design
used in our study. The pdf is not intrinsically relevant to a significance
test, which tends to rely on the cumulative distribution function, or cdf.
Initial piloting with the symmetric cdf version of violin plots (where
the width of the violin encoded the likelihood that the absolute value of
the y position is greater than or equal to the mean) were confusing for
the general audience compared to the relatively straightforward pdf
violin plots. The general visual metaphor, namely that as we move
away from the mean, values become less likely, is maintained even in
the pdf version. Additionally, previous work has shown that viewers
are capable of aggregating regions of a line graph with some precision
[7], affording both cdf- and pdf-reliant judgments. We believe that
violin plots used in the way we propose have a number of benefits
over standard bar charts with error bars:

• Affordance of comparison of values beyond the discrete “within
the margin of error/outside of the margin of error” judgments
afforded by bar charts with error bars.
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• Use of a strong, high fidelity visual encoding (position) to afford
precise readings of the pdf.

• Visual symmetry about the mean, mitigating within-the-bar bias.

3.4 Box Plots
There are several classes of visualizations of distributions which are
more common than the two we propose, such as box plots, or dot plots
with error bars. While we have included box plots in our evaluation,
and they meet many of the design goals above, we believe they are
unsuitable for our task. The largest problem is that they are both com-
monly and popularly used to encode the actual distribution of data.
For this problem we do not encode the distribution of data, but (in this
case) the distribution of a potential population mean given a sample
and certain statistical assumptions. Most commonly used probability
distributions (including the Student’s t distribution, the normal dis-
tribution, &c.) are unimodal and have infinite extent, while the data
about which we are making inferences may not. A box plot as com-
monly used to depict the distribution of the data is thus several an-
alytical steps removed from a confidence interval. Standard choices
in box plots also conflict with our desire to visualize a distribution of
population means — whiskers are a form of error bars, but in a box
plot whiskers usually denote range or 1.5× the interquartile range (al-
though there are exceptions to this convention, see 2.3). If the first
convention is used, then the whiskers of a t-distribution would extend
infinitely far along the y-axis. Lastly, there is a perceptual illusion in
box plots where large boxes make viewers underestimate the length of
error bars, and overestimate the length when boxes are small [29].

Nonetheless, box plots are a popular encoding for distributional
data, with many extensions to show a wide variety of higher order
statistics [26]. In order to adapt box plots to an inferential rather than
descriptive role we made several modifications. The first is that we
chose to visualize the pdf of interest rather than the data. The whiskers
are the margins of error, in this case the 95% t-confidence interval. We
calculate the extent of the box (normally bound by the first and third
quartiles of the data) by calculating the inverse cdf at points 0.25 and
0.75 (i.e. the locations which are equivalent to 25 and 75% of the of the
indefinite integral of the pdf, which is analogous to quartile locations).
The center line of the box is the mean. Figure 1 shows an example of
a box plot modified in this fashion. We believe that this modification
captures the “spirit” of box plots while still being relevant to the task
at hand. We believe that even these modified box plots will have the
following advantages over bar charts with error bars:

• Additional levels of comparison — while for bars charts with
error a y location is either inside the error bar or is not, for box
plots there are three such levels (outside the error bar, inside the
error bar, inside the box). A point inside the box is within a 50%
t-confidence interval from the sample mean.

• Visual symmetry about the mean, mitigating “within-the-bar”
bias.

4 EVALUATION

The goals of our evaluation were three-fold: to see if general audiences
would make decisions that were informed by both mean and error, to
assess how certain biases which affect how bar charts with error bars
are impacted by our proposed alternate encodings, and to assess other
strategies for mitigating these biases. Our results confirmed that our
proposed encodings offered concrete benefits over bar charts with error
bars. We report on three experiment sets here:

• Our experiment with one-sample judgments presents partici-
pants with a single sample mean, postulates a potential outcome
(in the form of a red dot), and asks participants to reason about
the relationship of this potential outcome to the sample. Our hy-
pothesis was that bar charts are subject to “within-the-bar” bias
(where points contained by the bar are seen as likelier than points
outside the bar), even for inferential tasks, but that alternate en-
codings (violin plots and gradient plots) would mitigate this bias.

(a) Experiment 1:

How likely is the

red outcome?

(b) Experiment 2:

How likely is the

outcome where can-

didate A gets 55%

of the vote?

(c) Experiment 3: How likely is candi-

date B to win the election?

Fig. 3. Example stimuli from our experiments. Each presents
tasks which are similar in concept, but deal with different as-
pects of the visual presentation of statistical inference. The
graphs are presented as violin plots, bar charts with error bars,
and gradient plots, respectively, but all experiments tested mul-
tiple graph types.

• Our experiment with textual one-sample judgments evaluates
another potential approach to mitigating within-the-bar bias,
which is to abstract some of the information from the bar chart
itself into text (that does not have the metaphor of visual con-
tainment). Our hypothesis was that this approach would be in-
effective, and would introduce unacceptable inaccuracy in com-
parisons.

• Our final experiment with two-sample judgments evaluates our
alternative encodings in a setting that resembles how these vi-
sualizations are frequently used in practice: to compare samples
and make predictive inferences about the differences in mean,
given the error. Our hypothesis was that viewers with limited
statistical backgrounds would be able to make assessments in a
way that resembles statistical expectation, but that our alternate
encodings would provide a better pattern of performance.

4.1 General Methods
We conducted a series of experiments using Amazon’s Mechanical
Turk to evaluate the performance of different graphical encodings for
inferential tasks. Participants were recruited solely from the North
American Turker population. Participants were exposed to a series of
different graphs and asked to complete a set of tasks per graph. Since
domain knowledge and presuppositions can alter the visual interpre-
tation of graphs [31], another factor was the framing of the problem:
samples were represented as either polling data (“Voter preference for
Candidate A”), weather forecast data (“Snowfall predicted in City A”),
or financial prediction data (“Payout expected by Fund A”). The exper-
iments were a mixed model design, where the type of encoding seen
and the framing problem were both between-subjects factors (each
participant saw only one encoding type, and one problem wording),
but the distances between means and size of margins of error were
within-subjects (participants saw multiple, balanced levels of different
sample means and margins of error). In all experiments where we var-
ied the problem framing, it was a significant effect, so it was included
as a covariate in our analyses. Including piloting (which includes the
results presented in [8], which had a slightly different study design)
we recruited 368 total participants. A total of 240 participants were
involved in the presented experiments, of which 102 (42.5%) were
male, 138 female, (average age = 33.3, σ = 10.2). Of the involved par-
ticipants, 90 had some college education, 110 were college graduates,
and 31 had post-graduate degrees — the remainder were high school
graduates with no college experience. Each participant for each exper-
iment saw a total of 36 graphs in sequence. Participants were given
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(a) Aggregate cdf values of all the stimuli that participants associated with a par-

ticular prediction confidence level. A dot on the sample mean would have a cdf

of 0.5, representing the zero point.

(b) Aggregate pdf value of all stimuli that participants associated with a particular

outcome likelihood.

Fig. 4. Gradient plots of our results from the one-sample judg-
ments experiment ( §4.2). Participants were shown a sample
mean with error, and a red dot representing a proposed out-
come. They were asked to predict whether or not the population
outcome was likely to be lower or higher than the red dot, and
then asked for their confidence in this prediction. This response
is analogous to a question about the cdf of the t-distribution (4a).
They were also asked how likely the red dot was, given the sam-
ple mean. This response is analogous to a question about the
pdf of the t-distribution (4b).

no explicit time limit to complete the experimental task, but the me-
dian participant took approximately 8 minutes (approx. 14 seconds
per graph) to complete the task. We used ColorBrewer [12] to select
colors for the stimuli. Figure 3 shows example stimuli and tasks from
each of the three experiment sets we present.

We include data tables, example stimuli, and screenshots of our ex-
perimental setup online at http://graphics.cs.wisc.edu/
Vis/ErrorBars. F and p-values reported in the results sections are
from two-way analyses of covariance (ANCOVAs) unless otherwise
stated.

4.2 One-sample judgments
“Within-the-bar” bias as originally proposed is a bias dealing with de-
scriptive statistics: a sample mean is made up of points, points far
from the mean are less likely to be members of the sample, but the vi-
sual area of a bar in a bar chart creates a region of false certainty. We
believed that due to visual metaphor of bar charts, something similar
would occur for tasks involving statistical inferences. We believed our
alternate encodings, by using a different visual metaphor, would not
create this bias.

In this experiment, participants were shown a series of 200x400
pixel graphs, each with one sample value and an associated margin of
error. For each graph a red dot was plotted at some set distance from
the mean (± 5,10, or 15 units in a 100 unit y-axis). The experimental
task dealt only with the interaction between the red dot, the difference
from the mean, and the margin of error. Piloting confirmed no signif-
icant effect of sample mean on task response, so sample means were
randomly selected from the set {35,40,45,50,55,60,65}. There were 6

different levels of margin of error {2.5, 5.0, 7.5,10.0,12.5,15.0}. Each
participant saw 36 graphs, 6 per margin of error. There were 3 differ-
ent levels of the between-subjects encoding factor (violin plot, gradi-
ent plot, or bar chart). There were also three levels of problem frame
(election, weather, or financial data). The wording of task questions
were slightly altered to fit the problem frame. The participants had
three main task questions. Verbatim from the election problem frame:

1. How do you think the candidate will perform in the actual elec-
tion, compared to the red potential outcome? (Fewer votes, more
votes)

2. How confident are you about your prediction for question 1, from
1=Least Confident, 7=Most Confident?

3. How likely (or how surprising) do you think the red potential
outcome is, given the poll? From 1=Very surprising (not very
likely) to 7=Not very surprising (very likely)

The expected behavior (based on statistical expectations) for question
1 is to predict that the sample mean is an accurate estimate of the actual
mean (so if the red dot is above the sample mean, you would expect
that candidate A would receive fewer votes in the actual election). If
this strategy is followed, then question 2 (which is contingent on the
guess for question 1) is somewhat analogous to a question about the
cumulative density function: what proportion of the probability space
is above (or below, depending on the answer to question 1) the red
dot? Question 3 by the same reasoning is somewhat analogous to a
question about the probability density function. Our hypotheses were:

H1 Participant responses would generally follow expected behavior.
That is, participant responses to question 1 would “follow the
sample mean” — if the red dot is above the sample, assume the
real election will be lower than the red dot, and vice versa. The
answers to question 2 should correlate with the cdf of the t dis-
tribution given the data, and the answers to question 3 should
correlate with the pdf. Both cdf and pdf are modulated by both
the difference in value between the predicted outcome and the
sample mean, and the margin of error of the sample.

H2 The non-symmetric encoding (bar charts) would exhibit within-
the-bar bias — proposed outcomes within the bar would be seen
as likelier than outcomes outside of the bar. Symmetric encod-
ings (box, violin, and gradient plots) would not have this bias.

H3 The proposed encodings, which encoded the t-distribution in a
non-binary way (gradient and violin plots), would provide more
accurate and more confident judgments about the t-distribution
than the binary encodings (bar charts and box plots).

4.2.1 Results
We recruited 96 participants, 8 for each combination of problem frame
and graph type. We determined significance through two sets of two-
way ANCOVAs, testing for the effect of different encodings and data
values on confidence in estimating cumulative probability, and esti-
mating the probability density. We included whether the red dot was
above or below the mean as a factor as well, and its interaction with
the graph type, to explicitly test for “within-the-bar” bias. Inter- and
intra- participant variance in performance was included as a covariate,
as was problem frame.

Our results generally support H1: We expected participant an-
swers on question 1 to follow the sample mean, and in general this
strategy was followed in 87.1% of trials (but see H3 results below).

We expected participant answers on question 2 (reported confi-
dence) to follow the cdf. That is, the perceived confidence that the
election would have results below a certain proposed result would be
correlated with the cdf of the t-distribution, and the perceived confi-
dence that the election would have results higher than a certain value
would be 1- the cdf at that location. Indeed, the relevant value (the
cdf if the participant predicted the real outcome would be less than the
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Fig. 5. A gradient plot of results from our one-sample judgments experiment (§4.2). Participants were shown a red dot representing
a potential outcome and judged how likely this outcome was given the sample mean and the margin of error. Statistical expectation
is that likelihood would be symmetric about the mean — that is, red dots above the sample mean would be perceived as just as
likely as those below the mean. For bar charts this is not the case — points visually contained by the glyph of the bar (below the
sample mean)were seen as likelier than those not contained by the bar. Visually symmetric encodings mitigate this issue.

proposed outcome, 1-cdf otherwise) was a significant main effect on
reported confidence (F(1,3359) = 55.6, p < 0.0001). Participant’s average
reported confidence was positively correlated with the relevant value
of the cdf (R2 = 0.805, β = 6.78). Figure 4a shows the relationship
between answers on question 2 (how confident are you in your predic-
tion?) and the actual cdf values of responses.

We expected participant answers on question 3 (reported likelihood
of the proposed outcome) to follow the pdf. That is, the perceived
likelihood of a dot plotted on the graph should correlate to the value of
the probability distribution at that point. The value of the pdf was only
a marginal effect across all results (F(1, 3359)=3.05, p = 0.081), but was a
significant effect for trials where the participant followed the correct
strategy for question 1 (F(1,3361)=30.2, p < 0.0001). Participant’s average
judgments about the likelihood of outcomes was positively correlated
with the pdf values of the stimuli presented (R2 = 0.842, β = 5.70).
Fig 4b shows the relationship between responses on question 3 (“how
likely is this proposed outcome?”) and the actual pdf values.

Our results support H2: We observed a significant interaction be-
tween the position of the dot (above or below the mean) and encod-
ing (F(2,2)=21.3, p < 0.0001) on the perceived likelihood of the dot as an
outcome. A Tukey’s test of Honest Significant Difference (HSD) con-
firmed that participants in the bar chart condition considered red dots
below the mean (and so within the visual area of the bar) significantly
more likely than those above the bar. This effect was not significant
for any of the remaining, symmetric encodings. Figure 5 summarizes
these results.

Our results generally support H3: A Tukey’s HSD confirmed that
participants more consistently followed the expected strategy for ques-
tion 1 (following the sample mean) with symmetric encodings (violin:
89.2% of trials, gradient: 88.5%, box: 87.4%) than with bar charts
(83.2%). Graph type was also a significant main effect on confidence
(F(3,2982)=7.46, p < 0.0001). A Tukey’s HSD confirmed that participants
were significantly more confident with the alternate encoding types
which provided more detail about the probability distribution (gradi-
ent: M = 5.12, violin: M = 5.06) than with the bar charts and box
plots (M = 4.86 for both encodings).

4.2.2 Discussion

This experiment shows that a lay audience, even exposed to encodings
that are unfamiliar, and with no expectation of particular training, can
perform judgments that are correlated with inferential statistics: points
that are far away from the mean are seen as more unlikely, but smaller
margins of error also reduce the perceived likelihood of distant points.
However, this study shows that within the bar bias (where points con-
tained by the visual boundaries of the bar are seen a likelier members
of a sample than those outside it) is present even for inferential tasks,

(a) Potential outcome in text, mar-

gins of error are visual.

(b) Both potential outcome and mar-

gin of error in text.

Fig. 6. The stimuli for the textual one-sample judgments exper-
iment (§4.3). Unlike in the first experiment, where participants
were presented with a red dot representing a potential outcome,
here the outcome was presented in text (e.g. “how likely is can-
didate A to receive 45% of the vote?”). In the second condition
the margin of error was also presented textually rather than with
explicit error bars.

and can be severe enough to not just impact the perceived likelihood of
different outcomes, but even the direction of inference. Our proposed
encodings, by virtue of being symmetric about the mean, mitigate this
bias, for a pattern of judgment that is better aligned with statistical ex-
pectations. The alternate encodings also offer more information about
the probability distribution than a bar with errors, allowing viewers
to reason more confidently at tasks beyond “this value is within the
confidence interval” or “this value is beyond the confidence interval.”

4.3 Textual One-sample judgments

If within-the-bar bias is a visual bias (a red dot is visually contained
within a bar), then it is possible that simply encouraging comparisons
to be done with only partial assistance of the visualization might mit-
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(a) Within-the-bar bias when information is moved from the graph to text. If only

the proposed outcome is moved from graph to text, values within the bar are seen

as likelier than values outside the bar. Only when both outcome and margin of

error are removed is the bias mitigated.

(b) Changes in adherence to expectation maximizing strategy when information

is moved from the graph to text. Removing both margin of error and proposed

outcome to text results in a significant drop in participant accuracy.

Fig. 7. Gradient plots of our results of our textual one sample
judgments experiment §4.3). When asked to consider poten-
tial outcomes, the expected behavior is that viewers will “trust”
the sample mean – if a potential outcome is higher than the
sample mean, then the “real” outcome will likely by lower than
the potential outcome. Participants largely adhered to this strat-
egy throughout experiments. While moving information from the
graph to the text does mitigate within the bar bias, it significantly
affects alignment with expected strategy. Since viewers must
mentally project the potential outcomes and margins of error to
the graph space, the relationship between the potential outcome
and the sample mean becomes more difficult to analyze.

igate the bias. That is, by moving both the potential outcome and
the margins of error to text, judgments might be better aligned with
statistical accuracy. This scenario also represents how polling data
is frequently depicted in practice, with information about poll size
and margin of error written in a legend, but the chart itself display-
ing the sample means. We wished to evaluate this potential solution,
as we speculated that it would introduce a great deal of inaccuracy to
judgments and comparisons involving sample means (since it seemed
likely that viewers would have to mentally project the text values into
the space of the graph).

This experiment had the same factor levels and task questions as
the previous experiment (and so each participant saw 36 stimuli), with
three differences. The first is that instead of plotting a red dot on the
graph itself, the red potential outcome was displayed in colored text
under the graph. The second is that we presented only two graph types
as a between-subjects factor: a bar chart with error bars, and a bar chart
without error bars (in both cases the margin of error was displayed in
text below the graph). That is, the conditions reflected moving some
portion of the information to text from the graph, either the proposed
outcome or both the proposed outcome and the margin of error. This
experiment used only one problem frame (the election phrasing).

Our hypotheses were:

H1 Participant responses will be similarly connected with statistical
expectation as in the previous experiment — responses to ques-

tion 1 will align with the direction of the proposed outcome to the
sample mean, question 2 will correlate with the cdf, and question
3 with the pdf.

H2 Removing the proposed outcome from the plot and placing it in
text will mitigate within the bar bias, since the visual metaphor
of containment is broken.

4.3.1 Results

We recruited 48 participants, 24 for each graph type. We conducted
similar ANCOVAs as in the previous experiment, testing how different
encodings, potential outcome placement, and margin of error affected
both cdf and pdf tasks.

Our results only partially support H1. Our expected strategy
for question 1 was that participants would follow the sample mean.
A Student’s t-test confirmed that the participants followed the ex-
pected strategy significantly more with bar charts with visual error
bars (91.6% of trials) than with bar charts with only textual margins
of error (62.2%). Figure 7 summarizes this result. Despite this poor
performance, participants were significantly more confident in their
judgments with the graphs with no visual error bars than in the stan-
dard graphs (F(1,1717)=64.8, p < 0.0001, M = 5.4 with no visual error bars,
M = 4.9 with visual error bars).

Our results only partially support H2. There was a significant
interaction between the graph type and whether or not the proposed
outcome was above or below the mean (F(1,1717)=15.3, p < 0.0001). A
post-hoc Tukey’s HSD confirmed that only for graphs with explicit vi-
sual error bars was there a significant difference in confidence between
values above or below the mean (M = 3.9 and M = 3.1 respectively)
– that is, within the bar bias was mitigated by moving both margin of
error and proposed outcome to text, but not otherwise.

4.3.2 Discussion

This experiment shows that the visual metaphor of the bar is sufficient
to create within the bar bias even if the actual values to be considered
are conveyed in text rather than plotted. Removing both margins of
error and the proposed value from the graph and to text mitigates this
bias, but does so at the expense of making the chart sufficiently con-
fusing to interpret that participants are highly inaccurate (or at least
unpredictable) even at simple tasks, and additionally they are unjusti-
fiably more confident in their incorrect judgments.

4.4 Two-sample judgments

In many real world visualizations of mean and error, the primary task
is comparison of multiple groups with uncertain values. In order to
recommend our alternate encodings for general use, it was important
to both confirm that general audiences could generally perform com-
parison tasks with patterns of uncertainty that were based on statistical
expectation.

In this experiment participants were shown 400x400 graphs de-
picting sample means from two populations (A and B), and asked to
make judgments comparing the likely performance of the two. Sam-
ple means were normalized such that A+B = 100 units. There were
six different sample means for A, {75,60,55,45,40,25}. As with the
first experiment, there were six different different margins of error,
{2.5,5.0,7.5,10.0,12.5,15.0} (of which the participant saw a total of
six per level, for 36 total stimuli), three different between-subjects
graph types (bar with error bars, violin plot, or gradient plot), and
three between-subjects problem frames (polling, weather, and finan-
cial frames). The participants were presented with three main task
questions, with wording slightly altered to fit the problem frame (here
from the polling frame):

1. If forced to guess, which candidate do you predict will win the
actual election?

2. How confident are you about your prediction for question 1, from
1=Least Confident, 7=Most Confident?
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(a) Bar Charts (b) Box Plots (c) Gradient Plots (d) Violin Plots

Fig. 8. Violin plots of the participant’s perceived confidence in their judgment between sample means (i.e. “which of two candidates
will win the election, given the polling data?”), plotted against the actual average p-value of the relevant 2-sample t-test. While, for
across all presented graph types, participants’ average confidence was negatively correlated with p-value (R2 = 0.66, β = −8.30),
unlike in statistical practice (where we would reject as not statistically significant differences with p-values of 0.05 or higher),
participants in general become gradually more confident on average with decreases in p-value.

Fig. 9. A violin plot of results from our two-sample judgments ex-
periment (§4.4). Participants were asked to predict the severity
of the outcome based on the sample. For instance, in the elec-
tion problem frame, they were asked whether the election will be
very close or one candidate will win in a landslide. This question
is analogous to an estimation of effect size. We display the ag-
gregate effect size (calculated here as the difference between
means in terms of the margin of error) for all stimuli that partic-
ipants associated with a particular level of one-sidedness. Par-
ticipants’ average estimation of one-sidedness were positively
correlated with effect size (R2 = 0.567, β = 2.10).

3. Which outcome do you think is the most likely in the actual elec-
tion, from 1=Outcome will be most in favor of A, 7=Outcome
will be most in favor of B? (This was measured internally as a
value from -3,3, with the “predicted effect size” being the abso-
lute value of the response to this question.)

The expected strategy based on statistical expectation for question 1
is to choose the group with the highest sample mean. Question 2 is
then analogous to a two-sample t-test (or, if it is known or assumed
that the sample means will always be 100, a one-sample t-test with
the null hypothesis that μ=50). Question 3 is then a question about
effect size. Since the prediction task was isomorphic to a t-test, we
calculated p-values internally for each sample mean comparison. The
median p-value was 0.05 by design, however the p-values were not
equally distributed among different margins (i.e. where the margins of
error were 2.5 or 5.0, there were no stimuli which would fail a t-test at
the α = 0.05 level).

Our hypotheses were:

H1 In general, reported confidences and effect sizes will generally
follow statistical expectation. That is, participants will “follow
the sample” with question 1 — if one candidate is leading in the

polls then that candidate will likely lead in the actual election.
The participant answers to question 2 should align with p value,
and the answers to question 3 ought to align with effect size.

H2 Encodings that encode margin of error in a binary way (bar charts
and box plots) will have different patterns of performance than
continuous encodings (violin and gradient plots), predicting big-
ger effects with more (perhaps even unjustified) confidence.

4.4.1 Results

We recruited 96 participants, 8 for each combination of problem frame
and graph type. We conducted two sets of one-way ANCOVAs, test-
ing for different encodings, framings, and data values on confidence
in predicted “winners,” and predicted effect size. Inter- and intra-
participant variance in performance was included as a covariate.

Our results supported H1: We expected answers to question 1 to
generally match statistical expectation, which is that the candidate
leading in the sample will also lead in the population. This strategy
was followed in 95.4% of trials. A Tukey’s HSD showed no signifi-
cant difference in strategy adherence among different encodings.

We expected the answers to question 2 to correspond to the p-value
of the relevant two sample t-test. Large p-values ought to be asso-
ciated with low confidence in the predictions of winners in the pop-
ulation based on the sample. Indeed, p-value was a main effect on
confidence (F(1,3424)= 49.4, p < 0.0001). Figure 8 shows the connection
between reported participant confidence in predictions and actual p-
value in detail.

We expected the answers to question 3 to correspond to the effect
size. We calculated effect size in terms of number of margins of error
between the two sample values (a scalar multiple of Cohen’s d). Effect
size was a significant main effect on predicted magnitude of outcome
(F(1,3424) = 1210, p < 0.0001). Figure 9 shows this result in detail.

Our results partially supported H2. For the predicted effect size,
graph type was a significant main effect (F(3,3424)=23.1, p < 0.0001). A
post-hoc Tukey’s HSD confirmed that participants using bar charts
predicted outcomes that were significantly larger than with other en-
codings (bar: M = 1.65, box and gradient: M = 1.54, violin: M =
1.43). This was also the case for confidence in predictions (F(3,3424)=

3.38, p = 0.018): participants were significantly more confident in pre-
dictions made by bar charts (M = 5.21) than for other encodings, but
confidence in the other three charts was not statistically significantly
different (gradient: M = 5.07, box and violin: M = 5.02). This gap
was even more significant for stimuli which fail to pass a t-test at the
0.05 level of significance (M = 4.42 for bar charts vs. M = 4.15 for
other encodings). That is, the elevated participant confidence was in a
sense unjustified, occurring whether differences were statistically sig-
nificant or not.
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4.4.2 Discussion
Our results show again that the right choice of visualization can al-
low even a general audience to make decisions that are aligned with
statistical expectation, but that these decisions are sensitive to how in-
formation is presented. We also show that the alternate encodings, by
conveying more detailed information about unlikely outcomes outside
of the margin of error, encourage more appropriate doubt about infer-
ences from samples to populations.

5 SUMMARY

Our experiments show that even the general audience is capable of
making nuanced statistical inferences from graphical data, taking into
account both margin of error and effect size. However, the most com-
mon method of visualizing mean and error, bar charts with error bars,
have several issues that negatively affect viewer judgments.

Bar charts suffer from:

• Within-the-bar bias: the glyph of a bar provides a false metaphor
of containment, where values within the bar are seen as likelier
than values outside the bar.

• Binary interpretation: values are within the margins of error, or
they are not. This makes it difficult for viewers to confidently
make detailed inferences about outcomes, and also makes view-
ers overestimate effect sizes in comparisons.

We can mitigate these problems by choosing encodings that are vi-
sually symmetric and visually continuous. Gradient plots and violin
plots are example solutions. Our experiments confirm that these pro-
posed encodings mitigate the biases above, and that modification of
bar charts (for instance by moving margins of error to text rather than
graphing them explicitly) address these biases only at the expense of
introducing inaccuracy and complexity to inferential tasks.

Our experiments show that the general audience can robustly rea-
son about mean and error. However, the issues we described above do
occur in practice, and affect how the general audience reasons about
uncertain information. The experiments also suggest that these issues
can be mitigated with alternate encodings. Moreover, the cost of using
alternate encodings appears to be low: even though the ones tested are
unfamiliar, they still offer performance advantages to a general audi-
ence. The performance improvements of the alternate encodings are
measurable in our experiments, but the practical effect of these dif-
ferences is difficult to determine. Other experimental methodology
might better assess the impact on decision making, for example an ex-
periment where stakes are higher might more clearly show differences
between encodings. While our experiments show that encodings that
follow our design guidelines provide advantages over bar charts with
error bars, we have not fully explored the space of designs of mean
and error encodings. We believe other designs that fit our guidelines
should also have these advantages. Our experiments suggest that some
encoding other than bar charts with error bars should be used, but are
less specific in recommending the best replacement.

This is not to say that bar charts do not have utility. There are tasks
where asymmetric encodings outperform symmetric encodings; for in-
stance, comparing ratios can be done quickly and more accurately with
bar charts as compared to dot plots or other encodings where area un-
der the bar is more difficult to estimate [5]. There are also cultural
costs involved in adopting non-standard encodings — viewers might
prefer to see familiar but known suboptimal encodings.

5.1 Limitations and Future Work
One area not well-covered by our experimental tasks was decision-
making: does the presentation of different sorts of statistical graphs
result in different actions (beyond mere predictions)? Assessing this
facet of inferential behavior would require a more involved series of
experiments, with real-world stakes. Likewise, our experiments did
not collect a great deal of qualitative data such as viewer preferences
for the different chart types: the aesthetics of information visualiza-
tions can be an important consideration for how data are perceived

and used [33], especially for issues of trust and uncertainty. In the
future we hope to modify or extend our set of proposed encodings to
cover a wider range of inferential scenarios, including the perception
of outlier values, regression, and multi-way comparison, and to deal
with additional known biases in human reasoning.

Our data and experimental design also did not reveal many signif-
icant differences between our two proposed encodings. Our data do
not support the use of one over the other for decisions tasks, however
paper authors, reviewers, and colleagues have stated differing pref-
erences between the two on aesthetic and theoretical grounds. We
present both in this paper to promote critique, but further work re-
mains to assess both encodings in a principled way.

We also did not investigate how performance might differ with dif-
ferent design decisions. For instance, we colored the gradient chart to
make the region within the margin of error fully opaque, but we could
have encoded the pdf of the t-distribution directly. We chose a sin-
gle set of color ramps for our encodings, but it is possible that other
choices might bias viewer judgments (for instance, viewers might
overestimate the likelihood of outcomes in red violin plots [4]).

5.2 Conclusion
In this paper we illustrate that the most common encoding for display-
ing sample mean and error — bar charts with error bars — has a num-
ber of design flaws which lead to inferences which are not very well
correlated with statistical expectation. We show that simple redesigns
of these encodings which take into account the semiotics of the visual
display of uncertain data can improve viewer performance for a wide
range of inferential tasks, even if the viewer has no prior background
in statistics. We show that the general audience can achieve good per-
formance on measurable decision tasks with encodings which are less
well-known than the standard bar chart.
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