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ABSTRACT

Declarative visualization grammars can accelerate devel-
opment, facilitate retargeting across platforms, and allow
language-level optimizations. However, existing declarative
visualization languages are primarily concerned with visual
encoding, and rely on imperative event handlers for interac-
tive behaviors. In response, we introduce a model of declar-
ative interaction design for data visualizations. Adopting
methods from reactive programming, we model low-level
events as composable data streams from which we form
higher-level semantic signals. Signals feed predicates and
scale inversions, which allow us to generalize interactive se-
lections at the level of item geometry (pixels) into interac-
tive queries over the data domain. Production rules then use
these queries to manipulate the visualization’s appearance.
To facilitate reuse and sharing, these constructs can be en-
capsulated as named interactors: standalone, purely declar-
ative specifications of interaction techniques. We assess our
model’s feasibility and expressivity by instantiating it with
extensions to the Vega visualization grammar. Through a di-
verse range of examples, we demonstrate coverage over an
established taxonomy of visualization interaction techniques.
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INTRODUCTION

Declarative languages decouple specification (the what) from
execution (the how). Popular in domains ranging from web
design (e.g., HTML/CSS) to database queries (e.g., SQL),
declarative languages are now widely used to design cus-
tom data visualizations as well. Designers describe map-
pings between data values and properties of graphical prim-
itives; a language runtime then determines appropriate con-
trol flows for data processing, rendering, and animation [5, 6,
40]. This decoupling lets users focus on visual encoding deci-
sions, leaving the runtime to unobtrusively optimize process-
ing [17]. Declarative design also simplifies retargeting, for
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instance allowing a visualization specification to be rendered
in a browser using HTMLS Canvas or Scalable Vector Graph-
ics (SVGQ), or as a static image for print-based media [36].

However, these languages provide little support for declar-
ative design of interactions. Some tools [5, 6] offer a pre-
defined palette of interaction techniques (brushing, zooming,
etc.) that can be declaratively applied. However, these “in-
teractor typologies” artificially restrict designers’ options and
typically support customization of only a limited set of pa-
rameters. For custom interactions, designers must instead
author imperative event handling callbacks. These callbacks
undo the benefits of declarative design by exposing execution
details, forcing users to manually maintain state [8] and coor-
dinate interleavings — a complex and error-prone task collo-
quially referred to as “callback hell” [12].

In this paper, we introduce a model of declarative interaction
design for data visualizations with expressiveness compara-
ble to imperative approaches. We first model interactive input
events as composable streams of data. Input event streams
are treated as first-class data sets, and thus are subject to
the full range of applicable data processing operators, includ-
ing filtering, aggregation and summary statistics. Interactions
can also be composed into arbitrary reactive expressions [38]
called signals. When a new event enters a stream, it propa-
gates to dependent signals and the expressions are automat-
ically re-evaluated. This approach, modeled on Functional
Reactive Programming (FRP) [3], defers the complexity of
coordinating event-driven state changes to the language.

By default, interactions occur at the visual (pixel) level. How-
ever, with visualizations, this is often insufficient. Instead, to
maximize reuse and expressivity, interactions must be lifted
to the data level [16]. Under our model, signals can be used
to construct intensional and extensional predicates that de-
fine membership in an interactive selection. By passing sig-
nals through scale inversions [11, 16] that map visual values
to corresponding data values, predicates can also express dy-
namic queries over data. Predicates can then be used to mod-
ify visual encodings using declarative production rules.

Our model also facilitates reusing interactions both within
and across designs. Interaction specifications (streams, sig-
nals, predicates, and rules) can be encapsulated as named in-
teractors: standalone declarative specifications that provide
a file format for interaction techniques. Moreover, streams
and signals are named to decouple low-level event processing
from application-level semantic events. Downstream interac-
tion logic is defined in terms of these named, semantic proper-
ties and not low-level input events. For example, when com-
bining two conflicting interactions or to retarget interactions



across form factors, we can simply rebind signals to different
low-level input events without any downstream modification.

We instantiate this model through reactive extensions to Vega,
a JSON-based visualization grammar [36]; an example Vega
visualization is shown in Figure 1. Although our model could
be implemented within other frameworks, Vega’s JSON envi-
ronment allows us to assess the extent to which our model
enables declarative interaction design, and evaluate its ex-
pressivity. We construct a diverse range of examples which
demonstrate substantial coverage of an existing taxonomy
of interaction techniques for data visualization [42], includ-
ing brushing & linking, panning, zooming, and filtering with
control widgets. These examples show that, through compo-
sition, reuse, and repurposing of interaction techniques, our
model promotes the accretive design of richer interactions.

RELATED WORK
Our declarative interaction model extends prior work on vi-
sualization systems, reactive programming and UI toolKkits.

Interaction Support in Visualization Toolkits

Interaction is an important component of effective data visu-
alization [25, 32], and most existing tools support a set of
common interaction techniques. Prefuse [18] provides con-
trols for focus, hover, drag, and tooltips, along with a pred-
icate language to express dynamic queries. Improvise [39]
introduces live properties — active variables that parameter-
ize a visualization and can be bound to control widgets. Live
properties take part in coordinated queries for linked brush-
ing or synchronized scrolling across multiple views.

Our model shares some conceptual underpinnings with these
systems. Improvise’s live properties provide a basic form of
reactivity, while coordinated queries and prefuse’s predicates
lift interactions to the data domain. However, both systems
take a monolithic approach to interaction design. Interactors
must be defined within a rigid class hierarchy, and subclassed
to be customized or composed. This approach complicates
interaction design and reduces flexibility, requiring entirely
new imperative code to modify input event handling or to tar-
get new platforms (e.g., from mouse to touch input).

Declarative tools such as Protovis [5] and D3 [6] similarly
offer a palette of standard interaction techniques, with black-
boxed event processing and limited customization via ex-
posed parameters. Custom interaction designs require im-
perative event handling callbacks, imposing different spec-
ification styles on visual design and interaction design [4].
These callbacks can stymie the benefits of declarative design
by exposing execution details and requiring increased devel-
opment effort. Other declarative models, such as Wilkinson’s
Grammar of Graphics [41] and Wickham’s ggplot2 [40] do
not include support for interaction.

Stencil [9] is a visualization language that models data us-
ing streaming semantics. When a data value changes, it is
automatically propagated to visual glyphs, and the visualiza-
tion re-renders. Stencil’s authors note that user input can be
modeled as a data stream, but they do not close the loop and
extend their language to support interaction design. Stencil

lacks constructs necessary to generate interactive selections
and generalize them to dynamic queries [16].

Similarly, Quadrigram [33] (née Impure [30]) constructs vi-
sualization applications using dataflow semantics. However,
the visualization components themselves are “black boxed”
into a chart typology with built-in selection interactions. As
it does not expose raw input events nor consider user interac-
tion as a data source, Quadrigram’s expressivity is restricted.

Constraint Programming

Imperative event callbacks often present development hur-
dles [28]. Callbacks registered outside the visualization
specification allow users to externally manipulate visualiza-
tion state and manually update dependencies [8]. This ap-
proach breaks encapsulation and necessitates the introduction
of side-effects: external calls to maintain state [7]. Callback
execution order can also be unpredictable, requiring users to
coordinate interleaved calls [12]. As a result, callbacks can
make it difficult to reason about the current state of the visu-
alization, which is now the product of both the original spec-
ification and the side-effects of interaction callbacks.

One alternative to callback-oriented imperative programming
is constraint-based specification. Systems like Gilt [28] and
pconstraints [21] implement one-way constraints: when the
value of a constrained interface is modified, its dependents are
automatically affected. Other systems, like Cassowary [2],
implement two-way constraints using more complex con-
straint solvers. Recently, Constraint]S [29] and Bret Victor’s
prototype for drawing data visualizations [37] have shown
that constraint programming is suitable for authoring web ap-
plications and data visualizations, respectively.

While constraint systems remove many of the obstacles intro-
duced by callbacks, they do not involve general consideration
of event handling, a crucial element for interaction design.
In fact, the authors of Constraint]S intend for their system to
complement event architectures [29].

Functional Reactive Programming

Functional Reactive Programming (FRP) [13] formalizes
semantics similar to one-way constraints. Drawing from
dataflow programming [24], FRP recasts mutable states as
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Figure 1. A JSON specification for a bar chart, demonstrating
Vega’s [36] existing abstractions. Data is imported from a URL. Scales
are defined to transform data values to visual values. Properties of
graphical marks (in this case rectangles) are determined by scale map-
pings. Guides (here, axes) can be instantiated as well.



time-varying streams of values. Among FRP variants [3], we
focus on Event-Driven FRP (E-FRP), in which values change
only in response to discrete events [38]. E-FRP models value
changes with two constructs: streams, which are potentially
infinite sequences of events, and signals, defined as the most
recent event from a stream. Signals are akin to variables and
can be composed into expressions. Runtimes for reactive lan-
guages construct a dataflow dependency graph; when a new
event fires, the event enters the appropriate streams and prop-
agates to any dependent signals, for which any dependent
expressions are automatically re- evaluated. Languages like
Flapjax [26] and ELM [10] demonstrate how E-FRP seman-
tics can be used to author interactive web applications.

However, existing instantiations of E-FRP lack primitives
critical for developing interactive data visualizations. By de-
fault, they only consider interaction events over the visual or
geometric space of a browser window. For data visualiza-
tion, it is important to be able to generalize selections to the
data domain [11, 16, 39]. Our model adopts the semantics
of E-FRP and extends it with primitives necessary to perform
interactions at both the visual and data levels.

Reusable Interactions

Myers et al.’s Garnet system introduces Interactors [27]: a
scheme for encapsulating interactive behaviors that enables
reuse by decoupling input events from application logic. Our
notion of interactors extends this work. In addition to endow-
ing interactors with reactive semantics, in our model interac-
tors expose their constituent components (signals, predicates,
and rules); a visualization can choose to use an entire interac-
tor or chosen subsets. Compared to Garnet, whose interactors
can only be generalized through provided parameters, our in-
teractors allow more granular reuse and repurposing.

DECLARATIVE INTERACTION MODEL DESIGN

With our model, we contribute a declarative grammar of in-
teraction design for data visualization. It extends and seam-
lessly integrates with existing grammars of graphics, offering
a lower-level compositional approach to interaction design.
As we later demonstrate, our model facilitates development,
enables richer customization, and allows greater reuse of in-
teraction techniques without an undue loss of expressivity.

Event Streams and Signals

Our model adopts the semantics of Event-Driven Functional
Reactive Programming (E-FRP) [38]. Low-level input events
(e.g., mouse events and keystrokes) are captured through
streams, rather than event callbacks. Abstracting event han-
dling as streams reduces the burden of combining and se-
quencing events — operations that would require callbacks to
coordinate external states. To this end, we introduce a syn-
tax for selecting and composing event streams, as shown in
Figure 2. While prior work has formulated regex-based sym-
bols for event selection [23], we instead draw inspiration from
CSS selectors. As a result, our syntax operators are likely to
be more familiar to visualization designers.

An event stream is denoted using an event name (e.g.,
mousemove), optionally prepended with a mark type

rect:mousemove
stream of mousemove events that occur on rect marks.

L_l_ﬂ' mousemove (mousemove) ( mousemove >

mousedown, mouseup
single stream merges mousedown and mouseup streams.

mousedown mousedown
mousedown ( mouseup ) (mousedown)

click[event.pageY >= 300][data.price < 500]
filtered stream of click events

click click | ( click ) (click) (click)
AS J

price = 300 price = 750 price = 425 price = 115 price = 500
pageY = 500 pageY = 310 pageY = 170 pageY = 333 pageY = 55

[mousedown, mouseup] > mousemove
stream of mousemove events that occur between mousedown and mouseup

(mousedown )(mousemove)(mousemove)(mouseup)( mousemove )
(mousemove )(VYIOUSGMOVE)

mousemove{3ms,5ms}
stream of mousemove events that occur at least 3ms, and at most 5ms, apart

mousemove Cmousemove )(mousemove )(mouseup)( mousemove )
mousemove mousemove

Oms 2ms 4ms 6ms 8ms 10ms

mousemove

Figure 2. Event streams can be instantiated, composed, filtered, and se-
quenced using a syntax inspired by CSS3 selectors and regular expres-
sions. This determines which events are captured by a particular stream
(denoted by the dashed grey rectangles).

(e.g., rect:, or symbol:). The comma operator (,)
merges streams to produce a single stream with inter-
leaved events. Square brackets ([]) filter events based on
their properties. When followed by the right-combinator
(>), square brackets also define bounding events for the
stream, serving as a “pre-filter” with the right-combinator
selecting “children.” Curly braces ({}) denote minimum
and maximum time intervals between events. These op-
erators are composable: [mousedown, mousemove] >
[keydown, keyup] > mousemove{5ms,10ms} is a
stream of mousemove events occurring at least Sms apart
and at most 10ms apart, between keydown and keyup
events, which in turn occur between mousedown and
mouseup events.

Critically, our model treats events as first-class data sources.
Not only can data transformations (e.g., statistical calcula-
tions) be run over event streams, but events can also be com-
posed into arbitrary reactive expressions as signals. By de-
fault, signals return the most recent event from a stream.
However, by drawing from multiple event streams, they can
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define finite-state machines — each stream triggering a transi-
tion between states, for example. By virtue of being modeled
as data sources, signals can serve as input to visual encod-
ing primitives (scales, guides, and marks) thereby endowing
them with reactive semantics. When an event fires, it enters
appropriate streams and is propagated to corresponding sig-
nals; signals are re-evaluated and dependent visual encodings
re-calculated and re-rendered automatically.

Upon definition, streams and signals must be given unique
names. These named entities are then used to define the rest
of an interaction technique. This separation decouples input
events from downstream application logic. Thus, an interac-
tion can be triggered by a different set of events by simply
rebinding stream and signal declarations. As we later demon-
strate, rebinding is particularly useful for retargeting interac-
tions or for combining otherwise conflicting interactions.

Predicates and Scale Inversion

Selection is a fundamental operation in interactive visual-
ization design: subsequent operators are applied to selected
items to manipulate them. For visual design, it can be suffi-
cient to make a predetermined selection for example, “select
all rectangles.” With interaction design, however, selections
are driven by user input. For instance, a user may brush over
points of interest, or adjust a slider to filter data.

To express interactive selections, we introduce reactive pred-
icates. Intensional predicates specify conditions over the
properties of members while extensional predicates explicitly
enumerate all members of the selection set [16]; this differ-
ence is shown in Figure 3. Predicates can be combined using
logical AND or OR. They may be defined inline to toggle the
properties of visual encodings but, if defined once at the top-
level with a name and parameterized operands, can be reused.

Predicate operands are typically signals and, as signals are
drawn from streams of input events, predicates express in-
teractive selections at the visual level by default. However,
pixel-level selection is often insufficient, as a single visualiza-
tion may have multiple distinct visual spaces. In such cases, it
is necessary to generalize an interactive selection into a query
over the data domain [16]. For example, consider a simple
overview+detail setup (Figure 4), in which the constituent
plots have distinct coordinate spaces but shared data domains.

Scale functions are a critical first-class component in visual-
ization design [41] as they transform data values into visual
values such as pixels or colors. By applying an inverted scale
function to predicate operands, we can lift a predicate to the
data domain [11]. However, naive application of scale inver-
sion can breakdown when trying to express a range selection
as a query. The semantics of quantitative scales allow a scale
inversion of range extents to naturally transform pixel-level
values to data values. The semantics of inverting discrete cat-
egorical or ordinal scales, however, are more complex.

To mask this complexity from the user, our model provides a
special range predicate. This predicate calculates range ex-
tents in pixel space using either constants or signal values
and, if a scale inversion is specified, produces a correspond-
ing query: intensional for quantitative scales, extensional for
categorical data. Figure 4 illustrates how range predicates and
scale inversion allow brushing in the coordinate space of the
overview plot to filter points displayed in the detail plot.

Production Rules

When predicates are applied directly to visual encoding prop-
erties, they serve as toggles. However, for more complex be-
haviors, our model provides production rules, an established
design pattern [15] that we endow with reactive semantics. A
rule defines the outcomes of evaluating a sequence of predi-
cates (an if-elseif—-else chain) to set property values.
For example, a rule might set a mark’s fill color to green if
predicate A is true, use a scale-transformed data value if B
is true, or otherwise set the color grey by default. Rules can
be defined inline with visual encoding properties, or can be
reused if defined at the top-level with a unique name and pa-
rameterized outcome branches.

User-Defined Functions
During our design process, we encountered visualizations in

which interactions trigger custom data transforms. For exam-
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ple, sorting a co-occurrence matrix by frequency or applying
a clustering algorithm to place similar rows and columns in
close proximity. It is not feasible for a declarative language
to natively support all possible functions, yet custom oper-
ations must still be expressible. Following the precedent of
languages such as SQL, we provide user-defined functions.
These functions can be declaratively invoked within the spec-
ification, akin to applying predicates, but must be registered
and defined at runtime. User-defined functions ensure that the
language remains concise and domain-specific, while ensur-
ing extensibility to idiosyncratic operations.

Encapsulated Interactors

To allow reuse of custom interaction techniques, our model’s
primitives can be parameterized and encapsulated as named
interactors. Interactors can subsequently be applied to con-
tainers or groups, or the top-level visualization, and function
like mixins. An interactor’s specification is merged into the
host specification and, to prevent conflicts, its components are
addressable only under its namespace.

When applied to the top-level visualization, only one instance
of the interactor (and its primitives) is created. When ap-
plied to groups, however, the interactor is scoped to the group
and thus multiple instances of the interactor may exist (one
per group instance). In such cases, the signals and predi-
cates of an interactor instance may be referenced using the
corresponding group’s key. However, it is often more use-
ful to be able to automatically aggregate across instances.
To facilitate this, when referencing an interactor’s predicate,
latest, any, or all flags use the most recently activated
interactor, or perform logical OR or AND aggregates over all
interactor instances, respectively.

Figure 6 illustrates how a brush interactor, extracted from
Figure 5, can be applied to create a scatterplot matrix. Six
instances of the brush interactor exist, one for each cell. The
latest flag ensures that the inside_brush predicate is
taken from the most recently used interactor, as determined
by which cell the interaction occurs in. If we wished to allow
multiple brushes, we would use the a1l flag instead.

IMPLEMENTATION

We implemented our model through reactive extensions to the
Vega visualization grammar [36]. While our model can be in-
stantiated under other visualization toolkits (e.g., D3 [6]), we
chose Vega as its visualizations are purely declarative JSON
specifications. As a result, reactive extensions to Vega allow
us to assess the extent to which our model enables declarative
interaction design. It is important to note that, by implement-
ing our model, we seek to evaluate its feasability and expres-
sivity (rather than the effectiveness of specific Vega syntax).

In Vega, the properties of graphical marks such as bars, lines,
arcs, and text labels are bound to the attributes of backing
data objects. Data sets can be specified inline or imported
from a URL. The grammar includes data transformation op-
erations, including common statistical summaries and visual
layout algorithms such as force-directed layout, treemaps,
and cartographic projections. Following the Grammar of
Graphics [41], scales and guides (i.e., axes and legends) are
provided as first-class objects. A JavaScript runtime parses
JSON Vega specifications into web-based components ren-
dered using HTMLS5 Canvas or SVG. Vega specifications can
also be rendered server-side to produce static PNG or SVG
files. Figure 1 illustrates how these abstractions are used to
create a bar chart in Vega.

Vega uses a multi-stage pipeline for constructing visualiza-
tions, similar to Protovis [5]. A Vega JSON specification is
parsed into a View object that manages data sets, data trans-
formation pipelines, and visual encoding functions that deter-
mine the properties of graphical marks. In the build phase,
an abstract scenegraph of marks is constructed with one node
for each datum per mark; encoder functions then modify node
properties. Finally, the abstract scenegraph is rendered, for
example to an HTMLS Canvas.

We augment the parser to support our model’s primitives and
construct the necessary dataflow graph. Event listeners are
registered to capture input events, and serve as source nodes
in this graph. The View object is the sole sink. The remain-
ing nodes in the graph are signals: either named signals from



the specification, or anonymous signals automatically con-
structed when a signal is used in the specification of another
primitive, for example within a predicate or mark property.

Events are propagated using a push-based model [3]. When
a source node receives an event, it pushes the event to all de-
pendents. When a signal value changes, corresponding en-
coders are re-evaluated in a localized update to the visualiza-
tion scenegraph. If a signal value triggers a change in a data
set (for example, a signal feeds a predicate used in a filter
transform), the corresponding transform pipeline and impli-
cated scengraph branches are updated. To prevent wasteful
computation and momentary inconsistencies — known as re-
active glitches [8] — updates execute in topological order: a
signal changes only when all of its parents are up-to-date.

Vega features an extensible data transformation pipeline;
we reuse this feature to implement user-defined functions
(UDFs). UDFs are named JavaScript functions that are reg-
istered with the Vega runtime, and can then be declaratively
referenced in the specification, like built-in transformations.

We leave performance optimization to future work. However,
all example visualizations render without visible lags using
Google Chrome 34 on an Apple MacBook Pro with a 2.3 GHz
Intel Core i7 processor and 8 GB of RAM.

EXAMPLE INTERACTIVE VISUALIZATIONS

To evaluate the expressivity of our language, we present a
range of examples and demonstrate coverage over Yi et al.’s
interaction taxonomy [42]. Yi et al. identify seven categories
based on user intent: select, to mark items of interest; ex-
plore, to examine a different subset of data; reconfigure, to
show a different arrangement of data; encode, to use a dif-
ferent visual encoding; abstract/elaborate, to show more or
less detail; filter, to show something conditionally; and, con-
nect, to show related items. It is important to note that
these categories are not mutually exclusive, and an interac-
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tion technique can be classified under several categories. We
choose example interactive visualizations to demonstrate that
our model can express interactions across all seven categories
and how, through composition of its primitives, supports the
accretive design of richer interactions.

Select: Brushing and Click/Shift-Click

Figure 3 demonstrates two interaction techniques for select-
ing points. The first allows a user to brush over a region, and
highlights points that lie within the brush extents. Signals are
registered to capture the start and end positions of the brush,
by default mousedown and [mousedown, mouseup]
> mousemove, respectively. A range predicate uses scale
inversion to test whether a point’s data value falls within the
specified horizontal and vertical data ranges. Figure 5 (left)
illustrates how a one-dimensional version of this interaction
can be expressed in Vega JSON.

The second selection technique allows the user to select indi-
vidual points of interest. A signal over clicked points feeds
data transforms that add or toggle points in a new “selected”
data source. A predicate checks if the shiftKey is set and,
if not, clears the data source before adding points. Another
predicate is then used to highlight points that exist within the
data source. Figure 5 (right) contains the Vega JSON for this
interaction. Both selection techniques use a production rule
to set the fill color of selected points.

Connect: Brushing & Linking

We can extend the previous example to create an encapsulated
interactor for brushing and linking. We can then apply the
interactor to add brushing to the scatterplot matrix shown in
Figure 6. Each cell of the matrix is an instance of a group
mark with its own coordinate space. The plotting symbol,
and necessary spatial scale functions, are specified within this
group. To brush within a cell of the matrix, we apply the
brush interactor to the group’s specification, and pass in the

"marks": [{
"Type": "group",
“from*: {
"data": "fields",
"transform": [{"type": "cross"}]

“scales": [{"name": "cell x", ...}, {"name": "cell_y", ...},

"interactors": [{
"name": "brush",
"url": "http://full/linkto/brush.json",
“input": {"x_scale": "cell_x", "y_scale": "cell_y"}

"marks": [{
"type": "symbol", "properties": { "update": {
"rule":

"predicate": "brush:inside_brush", "latest": 1
Uinput': {"x": {“field": {"group": "a.data"}},
Uy {"field": {"group": "b.data"}}},

"fill": {"scale": "color", "field": "data.key"},

3,
{"fill": {"value": "grey"}}
1}
o
}H
H

Figure 6. We can extract and parameterize the brushing interaction into an interactor, and apply it to the groups that define each cell of the scatterplot
matrix. Primitives within the interactor can be referenced under its namespace.
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Figure 7. (left) Panning & zooming a scatterplot. Brushing can be added accretively by including the brush interactor, and rebinding event streams
(indicated with strikethroughs). By extracting pan & zoom interactions to an interactor, we can repurpose it to perform semantic zooming on a
geographic map (right). A map of the United States shows a choropleth of state-level unemployment. Once the map is zoomed past a threshold, states
break up into counties, and show a choropleth of county-level unemployment.

appropriate scales. Signals and predicates defined within the must be registered that either instantiate or destroy a particu-
interactor are addressable under its namespace. lar interaction depending on the shiftKey state.
Had the interactor predicates defined selections over pixel In our model, the brush and pan signals can be rebound with-
space, the production rule would only highlight points within out modifying the interactor’s definition. Instead, we provide
the same cell as the brush (as each cell has a different coor- alternate source event streams when instantiating the interac-
dinate space). However, as shown in Fig. 5 (left), the interac- tor. For example, mousedown [event .shiftKey] can
tor predicates use scale inversion to lift the selection into the drive the brush start signal, while the pan start signal can
data domain. Thus, the production rule correctly performs the be triggered by mousedown [ !event .shiftKey]. Sim-
linking operation across scatter plots. ilarly, the signals could be rebound to support touch interac-
tion: one-finger drag to brush, two-finger drag to pan, and
Abstract/Elaborate: Overview+Detail pinch to zoom.

With our brush interactor, we can also create the overview +
detail visualization shown in Figure 4. In this case, brushing
is restricted to the horizontal dimension. In our visualization,
we override the height property of the visual brush added
by the interactor, and ignore the vertical range predicates it
populates. We use the horizontal range predicate with a filter
transformation, to filter points for display in the detail plot.
As a user draws a brush, signals update the horizontal range
predicate, which in turn reactively filters points in the data
source, updates scale functions and re-renders the detail view.

We can also extract the pan & zoom definitions into their
own interactor, and apply it to instead trigger semantic zoom-
ing [31], an encoding interaction technique shown in Figure 7
(right). At the top-level, the visualization shows a choropleth
map of state-level unemployment. After crossing a specified
zoom threshold, states subdivide to show a choropleth map
of country-level unemployment. Here, the pan signals drive
the geographic projection’s translation and the zoom signals
drive the projection’s scale parameter. By default, both maps
are drawn with states overlaying counties. A production rule

Explore and Encode: Panning & Zooming uses a predicate to test whether the zoom signal is above a
Figure 7 (left) shows pan and zoom interactions for a scat- specified threshold; if it is, the state-level map is rendered
ter plot. By default, scale functions calculate their do- transparently, displaying the county-level map underneath it.

main automatically from a data source. For this interac-
tion, however, we must parameterize the domain using re-
active signals. For panning, a start signal captures an ini-
tial (x,y) position, and subsequent pan signals calculate a
delta. This delta is used to offset the scale domains. Sim-
ilarly, a zoom signal applies a scale factor to the domains
depending on the zoom direction. By default, these signals
are mapped to mousedown, [mousedown, mouseup]
> mousemove and mousewheel, respectively.

Reconfigure: Index Chart

Figure 8 (left) shows an index chart: a line chart that inter-
actively normalizes time series to show percentage change
based on the current index point. To calculate the index point,
we construct a signal over mousemove events and then drive
the x coordinate through a scale inversion. As it is a quantita-
tive scale, scale inversion results in a value from a continuous
domain (i.e., any date/time from Jan 1 2000-Dec 31 2010).

When adding a brushing interaction to this visualization, the However, our dataset only contains stock prices for the start of
brush signals may conflict with the signals for panning: on every month, with the line interpolating between these points.
drag, both interactions might fire. One option to resolve this To use scale inversion for an index point, we need to find the
conflict is to begin brushing only when the shiftKey is de- nearest data value. We build predicates that, for each time
pressed. If we try combining these interactions using D3 [6], series, find a point that falls within a 2-week window on ei-
which offers brushing and panning as part of its interactor ther side of the inverted point and use this as our index point.
typology, the process can be onerous. Additional callbacks Using Vega’s data transformations, we join the index point
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Figure 9. Re-arranging the columns of a co-occurrence matrix. The
blue-headed column, Enjolras, is being dragged (left) and dropped over
the red-headed column, Javert (right).

against the original data set and normalize the data values.
Scale functions are defined in terms of the normalized data.

As a user moves their mouse across the index chart, the sig-
nal and scale inversion automatically update, data transforms
find a new index point and normalize the data, scale functions
update, and the visualization is re-rendered. This example
demonstrates how interaction can be used in a feedback loop
to provide data values that drive the visualization.

Reconfigure: Reordering Columns of a Matrix

Figure 9 shows a co-occurrence matrix of Les Misérables
characters. To reorder the columns of the matrix,
we first construct a data source that models the sort
order of characters and initialize it to an alphabeti-
cal ordering. A signal on .col_label:mousedown
captures the source column to be reordered, while a
signal on [.col_label:mousedown, mouseup] >
mousemove updates the target column location. On
mouseup, the data source is updated using a UDF to remove
the source column, and reinsert it at the target column’s index.

Filter: Control Widgets

Figure 8 (right) shows the Job Voyager [19] visualization with
control widgets to filter the visualized data. A textbox allows
users to enter search terms to filter job titles, while the radio
buttons allow users to filter by gender. We bind signals to the
value of these control widgets, and then construct predicates
attached to filter data transformations. For the textbox signal,
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a match predicate tests search terms against job titles, while
an equality predicate filters by gender based on the radio but-
ton signal. This example illustrates how external query wid-
gets can easily be bound into our reactive interaction model.

DISCUSSION: COGNITIVE DIMENSIONS OF NOTATION
The example interactive visualizations in the previous section
demonstrate our model’s expressiveness. Here, we seek to
evaluate our model from a designer’s standpoint. We use the
Cognitive Dimensions of Notation [4], which provides a set
of heuristics for evaluating the efficacy of notational systems
such as programming languages and interfaces. Of the 14 di-
mensions, we evaluate our model against a relevant subset,
and primarily compare it against common practices: declara-
tive specification of visual encoding using D3 [6] and imper-
ative event handling callbacks for interaction.

Abstractions (types and availability of abstraction mecha-
nisms) and Viscosity (resistance to change). Streams and sig-
nals abstract the low-level events that trigger interactions and
decouple them from downstream logic. This approach can
facilitate rapid iteration: the result of an interaction can be
designed (for example, highlighting points), and then a va-
riety of different event triggers can be prototyped by simply
rebinding the appropriate signals. As our examples demon-
strate, binding signals reduces the burden for resolving con-
flicting interactions or retargeting to different platforms. By
comparison, iterating with event callbacks can be more diffi-
cult. For example, a specific sequence of events may require a
specific ordering of callbacks, and coordinating the visualiza-
tion state across these various sequences falls to the designer.

Premature Commitment (constraints on the order of doing
things). Abstracting streams and signals does impose a pre-
mature commitment. Users must create them before they are
able to use any lower-level events to trigger state changes.
This requirement could be relaxed: users could use low-level
streams and signals inline, for example in a predicate defini-
tion. However, we believe inline reference to low-level events
streams is a poor design pattern, as it makes an interaction
technique dependent on a specific set of events, a common
problem with existing interactor typologies. This pattern re-
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Figure 8. (left) An index chart that shows the percentage changes for a collection of time-series. The index point (red vertical line) is determined by
the x position of a mousemove signal. (right) The job voyager can be filtered using signals bound to the state of control widgets. A textbox allows for
pattern-based filtering of job titles while radio buttons allow gender-based filtering.



duces reusability, making it more difficult to resolve conflict-
ing interactions (e.g., brushing vs. panning) or retarget inter-
actions across input modalities.

Hidden Dependencies (important links between entities are
not visible). Abstracting streams and signals also introduces
hidden dependencies, as they obscure which input events are
triggering a particular visual state change. However, we be-
lieve that the viscosity advantages outweigh the complexities
of added hidden dependencies, which can be alleviated by
naming the abstractions appropriately. Furthermore, as our
code examples illustrate, under our model all the factors that
directly affect a particular state are captured within a single
specification. For example, a signal definition specifies all
events or signals that may affect its value; similarly, a visual
property may use a rule which enumerates all the values it
may take. With D3, the visual specification may not com-
pletely define all visualization states. Instead, the user must
trace a flow through event callbacks, a process further exac-
erbated by unpredictable execution order. The user is forced
to coordinate interleaved callbacks, introducing hard mental
operations and error-proneness.

Consistency (similar semantics are expressed in similar syn-
tactic forms). Our interaction model is best suited for sys-
tems that declaratively specify visual encodings, and would
feel foreign in imperative systems. However, given the
widespread adoption of D3, and Vega’s increasing integra-
tion in systems [14, 22, 34] we believe this is not a significant
liability. By contrast, registering event callbacks on D3 vi-
sualizations breaks consistency: visual design is declarative
while interaction design is imperative. It requires users to
think in terms of different notational systems, and exposes
underlying implementation and execution concerns.

Visibility (ability to view components easily). One of the pri-
marily advantages of using D3, and registering event call-
backs, is being able to debug code directly within a web
browser [6]: the generated visualization can be inspected,
while the JavaScript console can be used to interactively de-
bug event callbacks. However, this is more difficult with
Vega: its runtime environment, which parses and renders a
specification, introduces its own stack of runtime abstrac-
tions. It is important to note that this is a limitation of the
current implementation of our model, rather than an inher-
ent limitation in the model itself. For example, our model
might also be used to implement extensions to D3, thus gain-
ing the advantages of declarative interaction design without
losing debugging capabilities.

In summary, our model introduces some hidden dependen-
cies and decreases visibility. However, we believe these are
outweighed by the increase in specification consistency of vi-
sual encoding and interaction, and the decrease in viscosity
by supporting abstraction mechanisms.

CONCLUSION

Our model contributes a substantive step towards enabling
declarative interaction design for data visualization. An im-
portant next step is to assess the language’s accessibility
through user evaluations. Are new users able to learn this

model? Can experts accustomed to callback-driven program-
ming quickly transition to a reactive model? Our work here
primarily focuses on the design of model primitives, and
we only implemented cursory optimizations of our reactive
dataflow graph. While existing performance is adequate for
many common visualization scenarios, more extensive per-
formance optimization is possible. For example, insights
from the streaming data literature [1] might be applied to op-
timize interactive queries.

Vega’s declarative format has facilitated integration into a va-
riety of systems, including graphical design tools [34], sta-
tistical packages [14], and computational environments [22].
We anticipate that our model’s declarative approach, and the
ability to package reusable techniques as interactors, will fa-
cilitate similar integration opportunities. We intend to con-
tribute our extensions back into the public Vega project. By
reducing the burden for programmatic generation of interac-
tions, we also hope to spur study into alternate, non-textual,
ways of specifying interactions; for example, interaction de-
sign through demonstration or by direct manipulation.

Learning and adapting examples is an important part of the
design process [20, 35]. Designers can use our notion of en-
capsulated, standalone interactors, to share, reuse, and learn
from the design of others. Corpora of interaction designs
could be created — similar to bl.ocks.org with D3 [6] vi-
sualizations — allowing users to browse through designs for
inspiration, or adapt them for their own visualizations.
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