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CAREER: Effective Interaction Design for Data Visualization
Society’s broad adoption of data visualization has been driven, in part, by decades of research developing
theories of effective visual encoding, and instantiating them in software systems to lower the threshold
for authoring visualizations. However, there has been little analogous theory-building for interactivity — a
feature widely thought to be critical for effective visualization as it enables a tighter feedback loop between
generating and answering hypotheses. Comparative empirical studies of interactivity are rare, and have
been conducted in an ad hoc fashion; and, interaction taxonomies do not provide design guidelines such as
how to pick between different techniques for a given task. For instance, does the data distribution affect
whether zooming should occur via buttons, continuous scrolling, or brush-to-zoom? Similarly, how should
interactive filters be depicted (e.g., highlighting selected points, dimming unselected points, or removing
them from the chart altogether) to more easily perceive trends in the data? And, critically, how do these
interaction design choices affect dataset coverage, the rate of insights, and people’s confidence?

This lack of theory has also impeded support for interaction design in visualization systems. While recent
work has explored higher-level abstractions for authoring interactivity, users must still manually invoke and
wire the necessary components together, with little of the guidance and support that accompanies the visual
encoding process. Moreover, with no established conventions for interaction design, authors and consumers
must contend with inconsistent and unreliable experiences — for instance, by default, dragging may pan the
chart, highlight brushed points, or zoom into the selected region depending on the tool used.

The proposed work will begin to develop a theory of effective interaction design for data visualization, and
will leverage it to enable new methods of specifying interactive behaviors. We propose to systematically
study the interaction design space using the PI’s Vega-Lite visualization grammar to enumerate candidate
points. By conducting a mix of large-scale crowdsourced experiments and in-lab studies, we will evalu-
ate the lower-level features of interaction design (e.g., usability) in context (e.g., data science notebooks,
interactive articles, etc.) and tie interaction design choices to higher-level cognition such as hypothesis gen-
eration. Study results will be codified in computational models (i.e., an interaction recommender system) to
enable exploration of new automated and mixed-initiative interfaces for authoring interactivity.

Intellectual Merit: The proposed work will contribute the first systematic, empirically-validated effective-
ness rankings for interaction techniques in data visualization. Critically, these rankings will be conditioned
on dataset characteristics, analytic task, and context, and will account for both low-level properties (e.g.,
accuracy and time-taken) and higher-level features such as query formulation and learnability (e.g., as de-
termined by interaction traces). We will codify these rankings in a recommender system to suggest effective
interaction techniques for a given dataset and task, as well as unexplored interactive states. Finally, we will
explore how the recommender system allows us to operationalize our effective rankings by developing new
methods for authoring interactivity, and designing novel perceived affordancces for interactive visualization.

Broader Impacts: If successful, the proposed work will establish best practices for interaction design in
data visualization, and significantly lower the barrier to entry for authoring interactive data visualizations.
To support real-world adoption of our results, we will open source our software contributions, integrate them
with popular data science environments (e.g., Jupyter and Observable), and host workshops and tutorials for
practitioners at appropriate venues (e.g., OpenVis Conf and ODSC). We will incorporate our research results
into classes the PI teaches at MIT, developing new material to teach interaction design through faded worked
examples and rapid prototyping exercises. Moreover, we will prioritize providing research opportunities for
women, underrepresented populations, and undergraduate students.

Keywords: visualization; interaction; empirical studies; design; data science; computational notebooks
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Project Description
1 Introduction
Data visualization has gone mainstream — from business intelligence to data-driven journalism, society has
embraced visualization as a medium for recording, analyzing, and communicating data. Although visual-
ization has been practiced for centuries1, the success of modern visualization rests, in part, on decades of
research developing theories of effective visual encoding. The need for this theory was prominently artic-
ulated by statisticians in the 1970s, including William Kruskal who noted that “in choosing, constructing,
and comparing graphical methods we have little to go on but intuition, rule of thumb, and a kind of master-
to-apprentice passing along of information” [53]. In response, in a seminal 1984 paper, statisticians William
Cleveland and Robert McGill began to define a theory of visual encoding by identifying a set of elementary
perceptual tasks people perform when reading charts, and then conducting experiments to order the tasks
based on how accurately participants performed them [22]. Magnitude Channels: Ordered Attributes Identity Channels: Categorical Attributes
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Figure 1: An excerpt of rankings of visual encod-
ing effectiveness [62], first empirically validated
by Cleveland & McGill [22].

Cleveland & McGill’s theory-building has had a transfor-
mative effect on the field. As they note, “a theory is
testable” and the subsequent body of graphical percep-
tion studies has refined and expanded their initial rank-
ings [32,33,49,87], as well as questioned expert wisdom on
avoiding pie charts [52] and “chart junk” [9, 17]. And, in-
stantiating this theory in software systems has lowered the
barrier to entry for visualization design — people no longer
need to be experts in, nor have an intuition for, visualiza-
tion design but can rather rely on recommender systems to
guide them towards effective design choices [58, 61, 93].

Although the research community has long articulated
the value of interactivity in supporting a “dialogue be-
tween the analyst and the data” [89], current visualiza-
tion theory has focused almost exclusively on visual en-
codings [27, 28, 45, 90, 96]. Comparative empirical studies
of interaction techniques are rare [48, 83]; those that ex-
ist have been largely conducted in a piecemeal and ad hoc
fashion, making it difficult to gain a broad overview of in-
teraction effectiveness. Taxonomies of analysis tasks, in-
teraction techniques, and cognitive costs have been proposed [4, 19, 34, 54, 77, 96] but have never been
empirically validated to produce effectiveness rankings. For instance, are the different means of depicting
interactive filters (e.g., highlighting selected points, dimming unselected points, or removing the latter from
the visualization altogether) equally usable, and do they have any impact on higher-level goals such as iden-
tifying trends or formulating hypotheses? Without analogous theory on effectiveness, current interaction
design practice suffers from many of the concerns of early visual encoding: there is a high barrier to entry
for authoring interactivity, and it is driven by largely unscientific and unstructured intuition.

This project proposes to begin developing a theory of effective interaction design for data visualization,
and exploring how it can be operationalized to enable new forms of authoring interactivity that lower the
barrier to entry. In particular, we expect the project to unfold across three phases:

1The first bar charts and line charts are credited to William Playfair, appearing in his 1786 work Commercial and Political Atlas.
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(1) Empirically Derive Effectiveness Criteria. We will design and conduct controlled studies to de-
velop measures for comparing alternative interactive designs conditioned on data, task, and context. Akin to
graphical perception studies, we will use large-scale crowdsourced experiments to study the “lower-level”
features of an interaction technique including usability, task completion time, and accuracy. Critically, we
will complement these experiments with in-lab studies to evaluate interactivity in context (including within
data science notebooks and interactive articles) and understand how it impacts “higher-level” cognition such
as hypothesis generation and downstream consumption of data. For instance, how does an interactive visu-
alization change subsequent analysis in a notebook, or does data comprehension increase for readers who
have interacted with a visualization embedded in an article?

(2) Codifying Effectiveness Criteria. To study the implications of effectiveness rules for interaction de-
sign, we will first codify the results from the previous phase of research into a new interaction recommender
system. This system should not only recommend effective interaction techniques for a given dataset, analy-
sis task, and visual encodings, but should also suggest unexplored interactive states. To do so, we will design
a novel task-based representation of interaction design, express our effectiveness criteria through a system
of logical facts and formal constraints, and incorporate machine learning methods to mine interaction traces.

(3) Operationalizing Effectiveness Criteria. We will explore how our effectiveness criteria, through
our recommender system, enable novel visualization interfaces and techniques. For instance, we will expose
recommended interactive states through new minimap displays, and adapt information scent techniques to
design new perceived affordances for interactive visualization. And, with recommended interaction tech-
niques, we will develop new approaches for authoring interaction through demonstration and automatically
augmenting static visualizations with interactivity by inferring analysis tasks in data science notebooks.

1.1 Intellectual Merit
This project will contribute the first testable theory of interaction design in data visualization. This theory
will comprise measures to rank alternative interaction techniques conditioned on dataset characteristics, an-
alytic task, and overall context, and account for both lower-level usability concerns as well as higher-level
implications on user goals and workflows. By building an interaction recommender system, this project will
also demonstrate how to operationalize this theory. In particular, we will design new perceived affordances
for interactivity in data visualization, as well as new approaches for authoring interactive behaviors includ-
ing through mixed-initiative interfaces and methods that automatically augment static visualizations with
interactivity by inferring task context and user goals. If successful, this project will serve as the foundation
for future work that systematically studies the interaction design space, mirroring the success of graphical
perception studies in the visual encoding space.

1.2 Broader Impacts
Through this work, we aim to shift interaction design practice away from being guided purely by intu-
ition and towards being grounded in empirically-validated principles. And, in doing so, we seek to make
authoring interactive visualizations more broadly accessible, particularly for non-technical and non-expert
audiences. To support these goals, we will (1) open source our software contributions; (2) engage in collab-
orations (letters attached) to integrate them with popular data science environments including Jupyter and
Observable; (3) host workshops and tutorials at practitioner-oriented venues (e.g., OpenVis Conf, ODSC,
and Information+); (4) integrate both theory and systems results into data visualization and human-computer
interaction classes the PI teaches at MIT (detailed plans are in § 4.1); and (5) as described in § 4.2, we will
prioritize providing research opportunities for women, underrepresented populations, and undergraduates.
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1.3 PI Qualifications and Career Objectives
The PI is poised to conduct this research based on his award-winning prior work developing toolkits [37,
80–82] and design systems [78, 79] for visualization with a focus on abstractions for interaction design.
This work will be central to achieving both the intellectual merits and broader impacts of this project: the
Vega-Lite grammar [80] provides the first representation of interactive visualization that can systematically
enumerate the interaction design space — a critical property for phase one of the project; the Lyra visual-
ization design environment [79] offers a platform for developing mixed-initiative approaches for interaction
design (phase three); and the thriving community around these tools (including wide adoption in the Jupyter
data science community, on Wikipedia, and at companies such as Apple and Google) provides not only a
large potential participant pool for phase one, but also an avenue for more immediate uptake of our results.

Moreover, the PI has an established track record of outreach to underrepresented and non-academic pop-
ulations. In his first year at MIT, a majority of his 13-member group are women and/or people of color.
The PI has served on the diversity committees for several conferences, and is a diversity co-chair for IEEE
VIS 2019, responsible for the diversity scholarship. He has a track record of speaking at practitioner venues
(including repeated appearances at OpenVis Conf and OSDC East) and has also served in these communities
(on the OpenVis Conf 2017 program committee, and as conference co-chair in 2018).

An Early Career Award will enable the PI to expand his research agenda to cover new categories of visu-
alization contributions2: while his doctoral work focused exclusively on visualization systems, this project
makes contributions in empirical studies, theories & models, and techniques & algorithms. This project, and
the collaborations it spurs, also lays a foundation for the PI to generalize insights on formally modeling and
empirically evaluating interactivity from visualization to the broader human-computer interaction space.

2 Background and Related Work
2.1 Graphical Perception Studies
In his seminal 1967 work Semiologie Graphique, French cartographer Jacques Bertin laid the foundation for
a theory of data visualization by proposing that visualization is a process of mapping data variables to the
visual variables (or channels) of graphical primitives called marks, and that these channels had an effective-
ness ordering [15]. By conducting human-subjects experiments, statisticians Cleveland & McGill were the
first to empirically validate these rankings (their elementary perceptual tasks roughly map to Bertin’s visual
variables), and Heer & Bostock later replicated and extended this work with crowdsourced participants [33].
In this work, effectiveness is defined as how accurately participants perceive encoded proportions by data
type (nominal, ordinal, or quantitative). More recent work has expanded this definition to include ensemble
encodings [88] (i.e., encodings of more than one visual object where participants perceive averages [2, 30]
or correlation [32, 44]). Thus, effectiveness rankings are now conditioned on task and dataset characteris-
tics [50, 77]. However, this body of work has only considered static visualizations, and a similar systematic
and rigorous approach has not yet been applied to determine the effectiveness of interactive behaviors.

2.2 Studies of Interaction Design
In the data visualization literature, interaction techniques have typically been evaluated at the point of their
development. Researchers have primarily focused on validating internal design decisions [24, 60, 86] and
if comparative studies are conducted, they focus on at most a handful of related techniques [48, 51]. As
a result, it is difficult to gain a broad and systematic overview of interactivity in data visualization. The

2http://ieeevis.org/year/2019/info/call-participation/infovis-paper-types
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human-computer interaction (HCI) literature provides exemplars of comparative evaluations of interactive
behaviors, with a rich body of work comparing techniques for pointing [3, 5, 8, 31, 64], scrolling [36, 70, 98,
99], and selecting [14, 23]. However, this work has primarily focused on low-level properties of interaction
design — namely, the speed of performing an interaction and often through the lens of Fitt’s Law [57] — and
has rarely studied the implications of interaction on higher-level cognition. For instance, does the scrolling
mechanism affect how likely a participant is to complete reading a document? Similarly, do particular
pointing techniques spur collaboration in multi-user settings? It has been difficult to make progress on
this dimension in HCI as the design space is insufficiently structured or constrained — techniques such
as pointing, scrolling, and selecting can be instantiated in myriad, diverse interfaces. By contrast, data
visualization provides a more structured design space to evaluate both lower-level properties and higher-
level implications of interactivity as researchers have developed taxonomies of analysis tasks and interaction
techniques at varying levels of abstraction [4, 19, 34, 77, 96] as well as their associated costs [54].

2.3 Models of Interaction Design
HCI pioneer Michel Beaudouin-Lafon has proposed [11, 12] that interaction models should provide three
properties: (1) descriptive power, “to describe a significant range of existing interfaces”; (2) evaluative
power, “to help assess multiple design alternatives”; and (3) generative power, “to help designers create
new designs”. This lens is useful for understanding why it has been difficult to build a theory of effective in-
teraction design: generative power is critical for isolating specific properties and systematically enumerating
alternative designs to test. With visual encodings, Bertin’s visual variables and Cleveland & McGill’s ele-
mentary perceptual tasks provided this power: experimental conditions could be systematically generated by
varying one channel and holding the others constant. Thus far, we have lacked an equivalent generative rep-
resentation of interaction design, which has typically occurred through low-level imperative event handling
programming [63]. As a result, interaction techniques have been implemented in isolation and researchers
have had to reverse engineer [70] and reimplement them [83] in order to conduct ad hoc comparative eval-
uations. The PI’s past work with the Vega-Lite visualization grammar [80] provides the first generative
representation of interaction design. For a constant set of visual encodings, Vega-Lite allows us to not
only systematically enumerate interaction techniques (e.g., filtering, panning, zooming) but also vary their
constituent properties (e.g., what events trigger the interaction, or how is it depicted on the visualization).

3 Research Plan and Intellectual Merit
To begin developing a theory of effective interaction design in data visualization, this project proposes three
phases of research. First, we will conduct empirical comparative studies to evaluate the low-level usability
of different alternative designs for common interaction techniques (e.g., panning, zooming, and filtering)
and to study the implications of interactivity on higher-level cognition such as query formulation and insight
generation. To study their implications, we will codify these results in an interaction recommender system
that is able to suggest effective techniques for a given dataset and task, and is also able to recommend
unexplored interactive states. Finally, we will explore how our theory, via the recommender system, enables
new visualization techniques and interfaces that help lower the threshold for interaction design.

3.1 Phase One: Empirical Studies of Interaction Design
The goal of phase one is to begin to do for interaction design what Cleveland & McGill’s early studies,
and the subsequent rich body of graphical perception studies, have done for visual encoding: develop effec-
tiveness rankings. We define the effectiveness of an interaction technique by drawing on cognitive science
theory: Hutchins, Hollan, & Norman identify that an interactive behavior is most successful when it bridges
the gulf of execution, or how easily can a user operate a given technique, and the gulf of evaluation, or
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how well does the technique accomplish the user’s goals [41]. Heidi Lam proposes that an additional gulf
of formulation is necessary to capture the cost of reacting to output and formulating subsequent new goals
during interactive data analysis and discovery [54]. In this phase, we will empirically evaluate these three
gulfs through a series of controlled studies.

To evaluate the gulfs of execution and evaluation, we will isolate individual interaction techniques (e.g.,
zooming or filtering) and vary their constituent properties (e.g., what input events trigger them, how are
they displayed on the visualization, etc.) for a constant set of visual encodings. We will measure the
accuracy, time taken, and number of interactions (i.e., input events) needed to complete tasks from Amar
et al.’s taxonomy [4] of primitive analysis tasks (e.g., retrieve value or characterize distribution). As we
are assessing the lower-level mechanics of interactivity, we will conduct these studies by crowdsourcing
participants, akin to graphical perception studies [33].

By contrast, to evaluate the gulf of formulation and impact on subsequent analysis goals, we must study
interactivity in context and under a more open-ended process. Thus, we will conduct in-lab experiments
with participants covering a broad range of data analysis expertise, and will ask them to engage with instru-
mented visualizations embedded in data science notebooks (e.g., Jupyter and Observable) and interactive
articles. Participants will be asked to conduct tasks, such as explore the dataset, drawn from higher-level
taxonomies [34,96]. In addition to capturing quantitative measures (e.g., usability metrics, dataset coverage,
etc.), we will ask participants to think aloud, and bookmark and caption interesting interactive states that
generate insights or spur further questions — a protocol used to evaluate visual analytics systems [94, 95].
Through a qualitative coding procedure, we will characterize these insights using existing taxonomies to
identify their complexity, depth, and relevance [67,97]. Finally, we will record interaction traces [25,35,42]
to determine patterns between interactive operations, higher-level cognition, and participant personality [20].

Recent work by Kim et al. has shown that visual encoding effectiveness is conditioned on dataset character-
istics [50], and we expect the same to hold true for interaction effectiveness. Thus, following their setup, we
expect to use a mixed-design: a within-subjects treatment for interaction techniques, and between-subjects
treatments for task and data distributions balanced across subjects. To ensure ecological validity, we build
on the PI’s preliminary work with VizNet: a large-scale corpus of over 31 million real-world datasets,
with which the Kim et al. results were replicated [40]. All study conditions will be constructed using the
PI’s Vega-Lite visualization grammar [80], which provides the first generative model of interaction design
in data visualization: for constant visual encodings, we can enumerate interaction techniques and vary their
constituent design elements systematically (see Figs. 2&3). Moreover, Vega-Lite provides us with a thriv-
ing user community which we can tap into for recruiting participants; doing so further promotes ecological
validity by ensuring our studies account for real-world data analysis and visualization design expertise.

3.1.1 Example Empirical Studies
Here, we describe some specific studies we plan to conduct. We note that this is not an exhaustive list, but
rather serves to provide concrete examples of the broader guiding principles discussed above.

(A) Pan & Zoom. Recent work by Schwab et al. [83] provides one of the rare examples of empirical
evaluation of interaction techniques in data visualization: a comparative study of pan & zoom techniques in
one-dimensional timelines. To do so, however, the authors had to re-implement the techniques they sought
to compare in a custom toolkit. As Figure 2 depicts, a number of the design variations they consider, as
well as several they did not, naturally fall out of the Vega-Lite interaction grammar. Thus, a first study we
intend to run will replicate this prior study and extend it to evaluate additional designs (e.g., two-dimensional
panning & zooming, multi-view techniques such as overview+detail, etc.) and the effect of varying dataset
distributions. As in the original study, participants will be asked to locate a particular point (a task the authors
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{
  "data": {"url": "gapminder.json"},
  "mark": "point",
  "selection": {
    "sel1": {
      "type": "interval",
      "bind": "scales"
    }
  },
  "encoding": {
    "x": {"field": "fertility",   "type": "Q"},
    "y": {"field": "life_expect", "type": "Q"}
  }
}

"sel1": {
  "type": "interval",
  "bind": "scales", "encodings": ["x"]
}

"sel1": {
  "type": "interval",
  "bind": "scales", "encodings": ["y"]
}

"sel1": {
  "type": "interval",
  "bind": "scales", "zoom": "dblclick"
}

"sel1": {
  "type": "interval",
  "bind": {"scales": "mouseup"}
}

...
(e.g., multi-view zooming)

...
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Figure 2: A systematic enumeration of alternate designs for interactive zooming using Vega-Lite [80] including (a)
uni-dimensional zooming; (b) via alternate input events as described by the event stream selector syntax [82]; (c)
brush-to-zoom functionality; and (not depicted) multi-view mechanisms such as overview+detail.

drew from Brehemer & Munzner’s taxonomy [19], which roughly maps to retrieve value from Amar et al.)
and we will measure usability metrics to assess the gulf of execution these techniques present.

With additional rounds of studies, we can also study the implications on the gulf of formation. In particular,
by instantiating these techniques in context, and posing a broader more open-ended task for participants
(e.g., explore the dataset), we can ask questions including how does the panning & zooming style affect
dataset coverage and the rate participants make observations about the data? Or, might particular techniques
be preferred within data science notebooks versus interactive articles? With this latter question, for instance,
we might expect data scientists to prefer the precision of brush-to-zoom to explore a small cluster, but article
readers may favor continuous zooming via the scroll wheel for the low activation energy it presents [91].

(B) Interactive Filtering. Dynamic query widgets (e.g., dropdown menus, range sliders, etc.) are fre-
quently used to interactively filter a dataset [1], and Figure 3 illustrates a number of design variations that
Vega-Lite yields for depicting their effect: driving conditional visual encoding for selected or unselected
points, removing unselected points from the visualization, or showing selected points in a secondary view.
Users perform the same action (manipulating input widgets) across all variants, but what they are attend-
ing to likely varies. As a result, how filters are depicted on the visualization may affect the difficulty of
performing particular analysis tasks (i.e., the design variants may present different gulfs of evaluation). To
evaluate this question, we will employ a mixed design with a within-subjects treatment for the design alter-
natives, and between-subjects assignments for different data distributions and across 5 tasks from Amar et
al.: retrieve value, find extremum, determine range, characterize distribution, and correlate.

{
  "data": {"url": "gapminder.json"},
  "mark": "point",
  "selection": {
    "sel1": {
      "type": "single", "fields": ["country", "year"]
      "bind": {
        "country": {"input": "select", ...},
        "year": {"input": "range", ...},
    }
  },
  "encoding": {
    "x": {"field": "fertility",   "type": "Q"},
    "y": {"field": "life_expect", "type": "Q"},
    "color": {"value": "steelblue"}
  }
}

"encoding": {
  ...,
  "color": {
    "condition": {
      "selection": "sel1", "value": "red"
    },
    "value": "steelblue"
}

"encoding": {
  ...,
  "color": {
    "condition": {
      "selection": {"not": "sel1"}, "value": "gray"
    },
    "value": "steelblue"
}

"data": {"url": "gapminder.json"},
"transform": [{"filter": {"selection": "sel1"}}]

... ...condition other encoding channels

C

A B

"vconcat": [{
  "data": {"url": "gapminder.json"},
  "transform": [{"filter": {"selection": "sel1"}}]

"hconcat": [{
  "data": {"url": "gapminder.json"},
  "transform": [{"filter": {"selection": "sel1"}}]

D

Figure 3: A systematic enumeration of alternate designs for depicting interactive filters using Vega-Lite [80] including
(a) highlighting selected points; (b) dimming unselected points; varying (a) or (b) using other encoding channels (e.g.,
opacity, shape, size, etc.); (c) displaying only selected points; or, (d) displaying selected points in a secondary view.
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(C) Multiplexing Space vs. Time. Comparing different subsets of data is a common analysis task [96],
and a natural question to ask is whether comparisons should occur visually or temporally. Thus far, re-
searchers have focused on a narrow portion of this problem space: comparing visual juxtaposition (or small
multiples) with animation for graph data [6] or temporal trends [72]. The role of interactivity has been
underexplored and applying our experimental framework yields a rich area of inquiry. For instance, how do
the gulfs of execution and evaluation compare for static juxtapositioning, interactive juxtapositioning (i.e.,
brushing & linking [13]), and interactive superpositioning (i.e., visual highlights or dimming, informed by
study B) on analysis tasks from Amar et al.? How does the type of variable (i.e., nominal, ordinal, temporal,
etc.) used to partition the data impact these gulfs? And, critically, how do these variants affect the gulf of
formation: does interactivity increase data coverage, the number of insights generated, or the number of
hypotheses posed? Finally, by also testing animated variants — which will look identical to their interac-
tive counterparts, but provide a more passive experience — we can empirically validate popular claims of
interactivity allowing people to engage data in dialogue [89, 90], and the degree to which this is important.

3.1.2 Potential Risks and Alternative Approaches
In this phase of the project, there is a risk posed by the studies to assess higher-level cognition. Namely,
whether there will be interaction patterns that generalize across participants, or whether each participant
takes an idiosyncratic flow. To mitigate this risk, we adopt protocols successfully used by prior visual
analysis systems [94,95] and will begin with pilot studies to evaluate their feasibility for our use. Moreover,
if developing new protocols is necessary, we will seek guidance from Drs. Michel Beaudoin-Lafon and
Wendy Mackay, experts in conducting qualitative studies in human-computer interaction (letters attached).

3.2 Phase Two: Codifying Effectiveness Criteria
In this phase, we will investigate how to codify our empirically-derived effectiveness rankings in the design
of an interaction recommender system. This system will provide the foundation for phase three (opera-
tionalizing effectiveness) by helping bridge all three gulfs: execution, evaluation, and formation. To do so,
the system should be capable of not only recommending specific interaction techniques for a given dataset
and visual encodings (thus narrowing the gulfs of execution and evaluation) but also suggesting interactive
states yet to be explored to further a particular analysis goal (thus bridging the gulf of formation). We
expect to break the design of the interaction recommender system down into two research questions.

3.2.1 How is the recommender system invoked?
Recommender systems suggest alternative methods of resolving ambiguities in the input they receive. As
existing work shows, specifications of visual encodings can be extended in a fairly straightforward fashion to
introduce the necessary ambiguity: users leave blank one or both sides of a data-visual mapping [59,93,95].

Ambiguous specification of interaction techniques, however, presents a more challenging problem. Vega-
Lite decomposes interaction specification into roughly two components: what triggers the interaction (e.g.,
input events, HTML widgets, etc.) and what effect does it have (e.g., data transformation, conditional visual
encoding, etc.). If we followed an approach akin to visual encoding, we would allow users to leave one of
these components un- or under-specified and have the recommender system suggest possible completions.
However, it is unclear whether tractable progress can be made here as this model of interactivity is focused
purely on the mechanics of an interaction technique, and does not capture its purpose (i.e., the analysis task
a user hopes to accomplish, and a critical conditioning variable for our effectiveness criteria).

Thus, a key first step will be designing extensions to Vega-Lite to support specification of analysis tasks.
Critically, doing so should not sacrifice its descriptive and generative powers (§ 2.3) — e.g., how do
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lower-level tasks compose together into higher-level tasks? We will then extend CompassQL [93], a query-
ing language that augments Vega-Lite with wildcards to denote ambiguities (or “holes”) that a recommender
should resolve. Figure 4 depicts two potential extensions, but careful and thorough exploration of the wild-
card design space is necessary to study the tradeoffs between expressivity (i.e., the space of ambiguities),
viscosity (i.e., the difficulty of navigating this space), and the tractability of making recommendations.

3.2.2 How does the system perform the recommendation?
To answer this question, we will extend Draco [61], a system that expresses effectiveness rankings for visual
encodings via a system of constraints. Draco takes CompassQL specifications as input, compiles them to
a set of logical facts, and then solves the constraints to return a set of suggested effective visualization
designs. Moreover, Draco is capable of using results from empirical studies to tune weights associated with
constraints; and thus, it provides a prime platform to codify our effectiveness rankings for interactivity.

A first consideration will be how to represent interaction design as a set of logical facts. Some of these
facts may map directly to statements in our extended CompassQL or Vega-Lite (e.g., codifying analysis
task composition) but, in other instances, these facts may express concerns not articulated by other repre-
sentations. For example, a fact distinguishing discrete from continuous interactions (e.g., clicks or drags,
respectively) may be a key property for particular analysis tasks but does not have an analogous statement in
CompassQL or Vega-Lite. Once these facts are in place, we will design novel constraints to express our
effectiveness criteria, and use Draco’s existing facilities to tune their weights from our empirical results.

With these steps, for a given dataset and visual encodings, Draco will be capable of recommending effective
interaction techniques for particular analysis tasks. Thus, the remaining challenge will be how to model
interaction traces (captured in all phase one experiments) to recommend interactive states. Given their
high-dimensional nature, we expect that constraints will not be the right paradigm to generalize over inter-
action traces — for instance, it is unclear how we would use constraints to discretize continuous interactions
like brushing, panning, or zooming, to be able to suggest next states a user should visit. Instead, we expect
to adapt machine learning approaches which have been shown to be able to predict personality traits [20]
and future interaction for pre-fetching data [10] via support vector machines and Markov chains respectively.
Critically, these models should not only work alongside Draco’s constraints — such that, with a single am-
biguous specification, Draco would recommend interaction techniques and ways to begin interacting — but
they should update their suggestions in near real-time as a user interacts with the visualization.

{
  "data": {"url": "gapminder.json"},
  "mark": "point",
  "task": ["explore", "filter"],
  "selection": "?",
  "encoding": {
    "x": {"field": "fertility",   "type": "Q"},
    "y": {"field": "life_expect", "type": "Q"},
    "color": {"value": "steelblue"}
  }
}

A
{
  "data": {"url": "gapminder.json"},
  "mark": "point",
  "task": "?",
  "selection": {"type": "?", "on": [recording of input events]}
  "encoding": {
    "x": {"field": "fertility",   "type": "Q"},
    "y": {"field": "life_expect", "type": "Q"},
    "color": {"value": "steelblue"}
  }
}

B

Figure 4: Two possible extensions to CompassQL [93] (which implicitly depict potential extensions to Vega-Lite to
incorporate analysis task specification). (a) Recommending effective interaction techniques for given analysis tasks;
(b) Inferring possible tasks and techniques for a given demonstration (§ 3.3.2).
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3.2.3 Evaluation, Potential Risks and Alternative Approaches
Thorough evaluation of the interaction recommender will occur through the interfaces and techniques we
develop in phase three. Nevertheless, following Draco’s original approach, we will conduct benchmark
studies to understand the implications of recommending interaction techniques and states as compared to
simply visual encodings. The primary potential risk in this phase is that a system of logical facts and
constraints will prove to be too fine-grained to express effectiveness criteria for interaction design. We
mitigate this risk by also considering machine learning approaches validated in prior work, and by drawing
on the expertise of Draco’s lead author, Dominik Moritz (letter of collaboration attached). In the event that
alternate approaches are necessary, we will consider simpler generate-and-test methods [73] used by classic
automated visualization systems including APT [58] and SAGE [74].

3.3 Phase Three: Operationalizing Effectiveness Criteria
In the final phase of this project, we will explore novel visualization techniques and interfaces that are
enabled by the interaction recommender system developed in phase two.

3.3.1 From a Minimap of Interactive States to Perceived Affordances

Figure 5: Is this an example of a static or inter-
active visualization? Without any perceived affor-
dances [65, 66], users have no way of knowing that
they can click on bars to filter points, or brush in the
scatterplot to reaggregate the histogram.

Consider Figure 5: if you saw this visualization embed-
ded on a web page, would you expect it to be static or in-
teractive? If the latter, what interactions would you imag-
ine were possible? In user interface design, the set of in-
terface actions a user understands to be readily possible
(which may be a subset of all possible actions) are called
perceived affordances [65,66]. And, though perceived af-
fordances have been well-studied in the human-computer
interaction (HCI) literature, they have been relatively ne-
glected in data visualization. To our knowledge, only a
single recent data visualization paper has studied this is-
sue: coining the term suggested interactivity, Boy et al.
use icons and animation to indicate a visualization can
be interacted with, but human-subject evaluations yield
largely inconclusive results about whether participants do
indeed interact unprompted [18]. By applying our theo-
retical lens from phase one (and particularly study C),
we hypothesize that animation transforms interactivity from an active experience into a passive one without
relating to a user’s higher-level goals, and thus fails to bridge the gulf of formation.

Our interaction recommender system allows us to test this hypothesis by exploring the design space of
perceived affordances for data visualization. We will start by exploring the more straightforward design
a recommender system enables: displaying a gallery of suggestions. We dub this approach a “minimap” of
interactive states as it resembles similar views found in video games and text editors. For a given interactive
visualization, the recommender would suggest a high-level task or goal our studies found the technique to
be effective at answering. This task, along with the number of interactive states left to explore, would label a
button which reveals the minimap on click. Thumbnails represent clusters of states: hovering over one sets
the the visualization’s state, and clicking drills down into the state space suggestions.

Minimaps are just one point in a larger design space of using interaction recommendation to drive per-
ceived affordances for data visualization. As suggestions will update in near real-time, based on how a user
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interacts with the visualization, we will explore adapting information scent techniques [68, 92] to depict
a distribution of suggested states directly on the visualization itself — an approach more in-keeping with
the minimalist spirit of perceived affordances. For example, how can brush extents be overlaid to suggest
dragging or resizing it to explore particular portions of the data? Similarly, how can axes be augmented to
encourage a user to pan or zoom to particular locations? Can this information be displayed “just-in-time”?

Evaluation, Potential Risks and Alternative Approaches. We will conduct comparative human-subjects
evaluations of design variants we explore, measuring whether they increase a user’s propensity to interact
with a visualization, and how frequently users explore the specific states suggested. Moreover, the Boy
et al. work, and our phase one experiments, provide useful baselines for additional comparative studies.
For instance, how do interaction traces differ with and without perceived affordances? How does higher-
level cognition change (e.g., do participants pose more questions of the data)? Like the Boy et al. work,
there is a risk that our perceived affordance designs will be similarly inconclusive. However, we mitigate
this risk by grounding our designs in the results of our empirical studies via the interaction recommender
system. Moreover, our minimap design mimics displays of recommended visualizations in exploratory
visual analysis systems that have been found to yield superior analysis outcomes [94, 95]. In the unlikely
event that none of our designs yield meaningfully more or different participant engagement with interactive
visualizations, we believe our work would still provide a useful negative result to motivate further research.

3.3.2 Interaction Design by Demonstration
There has been a recent resurgence in research on graphical interfaces for visualization design. Systems
like Data Illustrator [55] and Charticulator [71] explore how the threshold for authoring visualizations can
be lowered by employing direct manipulation interaction including drawing shapes to represent marks, and
using drag-and-drop to bind data fields to visual properties (e.g., position, color, size, etc.). Though these
systems have a large expressive gamut, they focus exclusively on creating static visualizations.

We will explore how graphical and direct manipulation interfaces can be extended to support the de-
sign of interactive behaviors. In particular, we will work with the PI’s Lyra system [79] which provides a
graphical frontend to the Vega and Vega-Lite visualization grammars. In Lyra, direct manipulation interac-
tions (e.g., dragging a data field to drop zones that overlay the visualization canvas) generate statements in
Vega-Lite. Lyra compiles these statements, and merges them into the full Vega specification that is its back-
ing data model. Visual property inspectors (e.g., HTML widgets, color pickers, etc.) provide fine-grained
control over the latter. As a result, Lyra unifies these two levels of abstraction into a single cohesive environ-
ment: via direct manipulation, users can rapidly create recognizable output; and with the visual inspectors,
they can manually tweak low-level details. Users never need to explicitly select a level of abstraction to
work with, but rather work across them seamlessly without experiencing a sharp complexity cliff [16].

In this context, a natural analogy to draw would be for interactive behaviors to be designed via demon-
stration. Heuristics, however, will not be sufficiently expressive to capture the myriad possible interaction
techniques a single demonstration may map to. Thus, we will instead use the interaction recommender to
infer the most likely behavior the user intended for the given dataset and visual encodings. For instance,
the recommender may suggest “brush-to-zoom” when the user drags over a cluster of points in a scatterplot,
but “pan” when dragging over a geographic map. However, instantiating the recommender in the context of
an authoring environment raises several new research questions, including:

1. How are recommendations exposed to the user? While we anticipate being able to reuse aspects
of the minimap design (§ 3.3.1), it would be insufficiently expressive to merely recommend complete
interaction techniques in an authoring context. In particular, a user must be able to move across levels
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of abstraction for interaction design as seamlessly as they do for visual encoding. Thus, an immediate
challenge will be the design of new interface elements to visually represent the constituent com-
ponents of an interaction technique. Critically, these interface elements should promote a design
process with low viscosity [16] — through additional demonstrations or interface manipulations, users
should be able to fluidly compose and recompose whole interaction techniques and their components.

2. Why are these recommendations being made? Demonstration interfaces can present a wide gulf of
evaluation as the system may disambiguate a user’s input in unexpected ways. Visually representing
the components of a recommended technique is a first step to bridging this gulf, and we will explore
two further strategies. First, while prior systems [76] only surface recommendations after a demon-
stration is complete, we will investigate how to generate and update recommendations during a
demonstration. Second, using information scent techniques [68, 92], the demonstration interface
will communicate to the user how they need to vary their actions to generate alternate recommenda-
tions. Together, these approaches should narrow the gulf of evaluation by giving users a continuous
representation into the system state, with rapid, incremental, and reversible operations [84].

After constructing an interaction technique via demonstration, users will want to test and verify that it
behaves as they want it to. Thus, a final research question we will study here is the design of visual
debugging techniques for interactive behaviors. We have begun to investigate this question in preliminary
work [38,39] that has developed a timeline view for recording, replaying, and inspecting interactive state as
well as layered annotations for visualizing interactions on the chart. However, these methods operate over
Vega primitives [81] within a text editor, and exploring them within the context of Lyra opens new research
directions. For instance, how do we narrow the gap between debugging and design? If a user notices an
error through the debugging interface, can they identify it, demonstrate the desired behavior, and have the
interaction recommender synthesize the necessary bug fix?

Evaluation, Potential Risks and Alternative Approaches. We will conduct human-subjects studies to
evaluate the usability of interaction design by demonstration. And, through within-subjects studies that
compare demonstration with editing Vega and Vega-Lite specifications, we will study its impact on the
barrier to entry for authoring interactivity. The primary risk here is that our demonstration interface will
exhibit gulfs of execution and evaluation too wide for the user to cross. Recent results, however, suggest
there is a role for demonstration in interactive data analysis [75], and this project would study its impact
on data visualization design. Moreover, we look to mitigate this risk by coupling demonstration with more
traditional user interface elements to depict the construction of interaction techniques.

3.3.3 Automated Interaction Design in Data Science Notebooks
Interaction design by demonstration requires significant user intervention: users must first have the express
intent to create an interaction technique, and then work to disambiguate system suggestions. For data scien-
tists, however, visualizations are often an intermediary artifacts: they want to be able to rapidly create them,
interact with them to unearth insights, and then proceed with their subsequent analysis. Thus, it is infeasi-
ble to devote this level of attention to crafting interactive visualizations in the midst of an analysis process.
While the PI’s prior work with Vega-Lite formulated concise, high-level abstractions for interactive visu-
alization, and has seen broad adoption in the Jupyter and Observable data science communities, informal,
preliminary interviews with representative users suggests that manually specifying interaction mechanics
introduces sufficient friction into the analysis process (without a guarantee of insight commensurate with the
effort) that many users eschew it in favor of simply static visualization. Thus, we will explore the minimal
amount of user intervention necessary to synthesize an effective interactive visualization.
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We will work in Jupyter and Observable notebooks as the literate programming that occurs within them —
mixing code, comments, and other artifacts — offers a rich source of metadata to mine for analytic in-
tent. We will begin by looking narrowly at code cells, and using static analysis techniques to identify
expressions of low-level tasks from Amar et al. [4] or high-level tasks from Yi et al. [97]. For instance,
data.loc[data[’year’] === 2000] filters for records from the year 2000 while sales.join(stores,
...) connects two datasets together. When a task match is found, the interaction recommender is invoked
and its top suggestion is displayed in situ, and the dataflow is rewritten such that output is received from
the interactive visualization rather than through code execution3. With our previous examples, we might
imagine the recommender suggests a histogram where the user can click bars to interactively filter data in
subsequent cells, and the join produces a matrix view where users can not only rapidly visualize the result
of the operation but interactively reorder the rows and columns to identify patterns in the data.

Evaluation, Potential Risks and Alternate Approaches. We will run within-subjects user studies to assess
how an analyst’s process is affected by automated interactive visualization. For instance, do analysts more
broadly explore their datasets, do they pose and answer more hypotheses, or are they more confident in their
findings? To promote ecological validity, we will recruit real-world data scientists. A risk posed here is
analysis code is often a form of exploratory programming [46], and thus may prove too hetereogeneous to
mine reliably. Recent work by Kery et al. [47], however, suggests that analysis code does indeed provide
sufficient structure for static analysis. Moreover, newer analysis languages (e.g., Tea [43] or Touchstone [26,
56]) will be simpler to mine as they provide more declarative and domain-specific abstractions.

4 Education Plan

Figure 6: An excerpt of end-of-semester evaluations for the
PI’s new class 6.894: Interactive Data Visualization.

The research goals of this project align closely with
the PI’s pedagogical goals: to engage students in
research early in their academic careers, and to di-
versify the computer science study body using data
visualization, human-computer interaction (HCI),
and design thinking. In this section, we detail the
PI’s existing work along these two axes and de-
scribe how this project would further these goals.

4.1 Curriculum Development
In Spring 2019, the PI introduced a new course at
MIT, 6.894: Interactive Data Visualization. De-
spite being a brand new, graduate-level computer science class, over 50 students enrolled including a sizable
number of undergraduates and students from other departments including architecture, design, urban
studies & planning, and the Sloan business school. In end-of-semester evaluations, students rated the class
6.7 out of 7 with a 6.9 out of 7 for the PI’s instruction — both are among the department’s top scores.

As Fig. 6 shows, students found the class particularly engaging and interactive as the PI, drawing on his
participation in a CRA/NSF-funded teaching workshop for new computer science faculty [69], mixed tradi-
tional lectures with studio and active learning techniques that have been empirically-validated to improve
student performance [29]. For example, every class session included several think-pair-share activities to

3In Jupyter, this step involves coordinating the JavaScript frontend and Python kernel — an engineering task we will work on
with our Jupyter collaborators (see letter). Observable, as a reactive environment, natively supports this coordination.
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encourage students to actively and critically engage in new material [85]. Throughout the semester, stu-
dents were exposed to example visualizations, and conducted verbal design critiques to understand the
strengths and weaknesses of these examples [21]. To ensure students were not mechanically applying de-
sign principles, we employed faded worked examples across multiple modalities [7] including annotating
suboptimal visualization designs and sketching a redesign on paper, and exploring effective and ineffective
visualization designs via Vega-Lite in Jupyter notebooks. And, students conducted several peer evaluations
for each other’s assignments and final projects — in their final reports, many students noted how this process
helped improve their work, not only due to the feedback they received, but also as they came to more criti-
cally assess their own work. The vast majority of these final projects focused on civic and social issues (e.g.,
gerrymandering, workforce diversity, income inequality, social mobility, etc.) as the the PI had carefully cu-
rated the final project suggestions through outreach to researchers actively working on these issues — where
possible, teams were partnered with these researchers to engage in a user-centric design process.

In addition to 6.894, the PI co-instructs the undergraduate course 6.170: Software Studio on Web Devel-
opment, which also incorporates many of the same techniques including think-pair-share, faded worked
examples, and peer evaluation. If this project is successful, the research outcomes will positively im-
pact both classes as interaction design is a major component of both classes, but our ability to teach it
effectively is hampered by a lack of theory and corresponding design principles. At best, we are only able
to help students build an intuition for good interaction design by exposing them to myriad positive and
negative examples — an unstructured and ad hoc process that is particularly problematic when a student’s
intuition does not align with that of grading staff. Moreover, though research has successfully been raising
the level of abstraction for authoring interactive behaviors, the primary mechanism to do so remains textual
specifications — a representation that is often difficult for non-computer science students to work with.

To better integrate this project’s research and education goals, the PI has begun initial discussions with MIT’s
Teaching & Learning Lab (T&LL, letter of collaboration attached). As phase one of this project unfolds,
we plan to integrate our findings through new faded worked examples of interactive visualizations — for
instance annotating screenshots of interactive states with design principles, and then sketching (or imple-
menting) redesigns. Phase two will further facilitate this activity: the interaction recommender can be used
to first enumerate interactive states for annotation, and the alternate techniques it suggests can be used by
students to double check their sketches. And, we will use the interaction design by demonstration system
(built in phase three) to engage students in a rapid interaction prototyping exercise. These exercises will be
analogous to ones we currently run for visual encodings, shown in Figure 7. Throughout the duration of this
project, T&LL will conduct classroom observations to evaluate and improve the PI’s instruction as well as
administer pre- and post-assessments to measure student learning in design thinking and data literacy.

Figure 7: Photos from in-class activities in 6.894. (left) A faded worked example, where students annotated strengths
and weaknesses of the design using theory on visual encoding effectiveness. (center) Sketches from a re-design exer-
cise. (right) Sketches from a rapid prototyping exercise. In years 2 – 4, we will build similar exercises for interactivity.
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4.2 Diverse Participation in Computer Science Research
The PI is committed to, and has a track record of, working to increase diverse participation in computer
science research across career levels, demographics, and disciplinary boundaries. As a PhD student, he
mentored 8 undergraduate students (4 women). At MIT, the PI advises a female postdoc, 4 PhD students (2
women including one of color), 3 Master’s students (including 2 women of color), and 5 undergraduates (in-
cluding 2 women, one of color). 3 of these undergraduates, including both women, began working with the
PI after taking 6.894, and have submitted their final projects as posters or workshop papers to IEEE VIS and
ACM KDD. Several of these students, across all levels, come from outside of computer science including
science & technology studies, architecture, urban studies & planning, and integrated design & management.
Moreover, the PI has worked to further this goal through external service including on conference diversity
committees (e.g., Information+ and IEEE VIS 2018) and as the diversity co-chair for IEEE VIS 2019, where
he is responsible for administering the diversity scholarship.

This project budgets support for one PhD student, but we expect that approximately 1 – 2 undergraduate
students will participate every year (with funding support provided by the department’s UROP 4 and Supe-
rUROP5 programs as well REU supplements that the PI will apply for).

5 Broader Impacts
This project will make the following broader impacts:

(1) Open source software contributions. The PI has a track record of not only releasing his research
artifacts as open source software, but supporting and maintaining them on a continuous basis. All software
developed as part of this project (including the interaction recommender, and the demonstration and auto-
mated design systems) will be released as open source, or merged back into existing projects. We will also
collaborate with members of the Python/Jupyter data science community and Observable to ensure smooth
integration with these platforms. 2 months have been allocated in each years 3 – 5 towards this goal.

(2) Broad dissemination of results. Going hand-in-hand with the prior goal, the PI has a similar
history of facilitating broad adoption of his research. Research results from this project will not only be
published through papers at premier academic venues, but will be accompanied by an article that describes
the work in an accessible style published on Multiple Views6, a high-profile Medium blog about explaining
data visualization research to lay audiences. We will also partner with the MIT CSAIL press team (letter
attached) to promote research results in popular science & technology media.

(3) Advance discovery and understanding while promoting teaching, training, and learning. As
described in § 4.1, theoretical results will be incorporated into new curriculum material. Every software
release will include thorough documentation and tutorials. And, as we have done in the past, we will host
training workshops at practitioner-oriented venues (e.g., OpenVis Conf and ODSC) to facilitate adoption
by real-world users, and we have reserved specific travel funds for this purpose during every year of this
project. All educational and training material will be released under broad, permissive licenses.

(4) Broaden participation of under-represented groups. The PI has a track record of including diverse
student populations in the research process (see § 4.2) and this goal will be a priority for this project.

4http://uaap.mit.edu/research-exploration/urop
5https://superurop.mit.edu
6https://medium.com/multiple-views-visualization-research-explained
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6 Advisory Committee
The PI has assembled an advisory board of recognized experts to support the research and education work
described in this proposal. Dr. Brian Granger is the co-founder and co-director of Project Jupyter, and
will advise on the use of Jupyter’s telemetry system for the phase one studies, as well as provide feedback
on the automated interaction design tools (§ 3.3.3). Mike Bostock is the CEO of Observable, the creator of
D3.js, and formerly a visual data journalist at the New York Times. His advice will help us craft ecologically
valid experimental conditions in phase one, and he will also help us conduct experiments within Observable
notebooks. Dr. Michel Beaudouin-Lafon and Dr. Wendy Mackay are pioneers of human-computer
interaction, and have conducted decades of research into interaction models (§ 2.3) and quantitative and
qualitative studies of interaction techniques. We will draw on their expertise to inform the design of studies
in phase one, particularly if developing new qualitative methodologies becomes necessary. Dominik Moritz
will be an Assistant Professor at Carnie Mellon University in Fall 2020, and as the lead author of Draco, this
project will benefit from his feedback in phase two. Dr. Loudes Alemán is the Associate Director of MIT’s
Teaching & Learning Laboratory, and will work with us to develop new educational materials, conduct
classroom observations, and help administer pre- and post-completion surveys to assess student learning.

7 Project Timeline
The following visualization depicts how the research and education components of this project will unfold:

Invoking Recommendations

Performing Recommendations

Open source release

Interaction Minimap

Interaction Design by Demonstration

Automated Interactive Visualization

New Classroom Material: Worked examples of interaction Interaction Re-Design Exercise Interaction Prototyping Assignment

MIT T&LL Classroom Observations and Qualitative Assessments of Student Performance:

Tutorials & Workshops for Practitioners:

Education

Phase Two: Codifying Effectiveness Criteria

Open source release

Open source release

Phase Three: Operationalizing Effectiveness Criteria

Year 1 Year 2 Year 3 Year 4 Year 5

Phase One: Empirically Derive Effectiveness Criteria

8 Results From Prior NSF Support
The PI has no previous NSF support.
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Data Management Plan
Software Sharing Plan
All software produced as part of this project will be released under a BSD-like open source license, that
permits the use, modification, and packaging of our contributions in both commercial and non-commercial
contexts. Software will be released on completion of each phase or component of this project, typically
alongside a corresponding publication. All open source code will be made available on GitHub.com, a
public open source code repository.

Contributions to existing projects: In addition to making our software available independently, we plan
to merge pieces of our contributions back into existing open source projects (e.g., Vega-Lite, CompassQL,
Draco, and Jupyter) whenever possible and as appropriate. In doing so, we hope to extend the longevity of
our work, promote large-scale usage, and ensure long-term maintenance through further development. The
PI has a long history of open source contributions, and has been involved in several high-impact, mainstream
open source projects. The PI plans to continue this track of open source impact in this project.

Data Sharing Plan
For our phase one studies, we will use real-world datasets that are freely available in the public domain.
Data from our user studies will require more careful curation, as described below.

Data from User Studies: Data will be collected with the explicit permission and consent of participants,
and in strict accordance with IRB protocols. Outside of IRB-mandated contact information, no personally
identifiable information will be collected. Study participants will be assigned a pseudorandom identifier for
their data and a code linking them to the data will be kept on an encrypted external disk stored in a secure
cabinet in the laboratory.

Policies for Archiving, Sharing and Re-distribution: All public / synthetic data, code, and publications
(results, papers, etc.) will be made available to the general public by hosting them on the research group’s
website. Moreover, to ensure broad dissemination and access, a copy of all non-sensitive data will be hosted
on open access data and research repositories (e.g., arXiv and OSF).

Compliance: No personally identifiable information will be collected. All experiments will be approved by
IRB processes and conducted according to IRB guidelines.

Data, Metadata and Sharing Formats
To foster re-use, development and extension of research products, all research data releases will be made
available in universally accepted formats such as CSV and JSON, with sufficient documentation.
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