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Colorgorical: Creating discriminable and preferable color palettes

for information visualization

Connor C. Gramazio, Student Member, IEEE, David H. Laidlaw, Fellow, IEEE, Karen B. Schloss

Fig. 1. Colorgorical palettes: (left) a 3-color palette generated with high name difference; (center) an 8-color palette generated with
high pair preference; (right) a 5-color palette generated with high pair preference, medium perceptual distance, and a hue filter.

Abstract— We present an evaluation of Colorgorical, a web-based tool for creating discriminable and aesthetically preferable cat-
egorical color palettes. Colorgorical uses iterative semi-random sampling to pick colors from CIELAB space based on user-defined
discriminability and preference importances. Colors are selected by assigning each a weighted sum score that applies the user-
defined importances to Perceptual Distance, Name Difference, Name Uniqueness, and Pair Preference scoring functions, which
compare a potential sample to already-picked palette colors. After, a color is added to the palette by randomly sampling from the
highest scoring palettes. Users can also specify hue ranges or build off their own starting palettes. This procedure differs from
previous approaches that do not allow customization (e.g., pre-made ColorBrewer palettes) or do not consider visualization design
constraints (e.g., Adobe Color and ACE). In a Palette Score Evaluation, we verified that each scoring function measured different color
information. Experiment 1 demonstrated that slider manipulation generates palettes that are consistent with the expected balance
of discriminability and aesthetic preference for 3-, 5-, and 8-color palettes, and also shows that the number of colors may change
the effectiveness of pair-based discriminability and preference scores. For instance, if the Pair Preference slider were upweighted,
users would judge the palettes as more preferable on average. Experiment 2 compared Colorgorical palettes to benchmark palettes
(ColorBrewer, Microsoft, Tableau, Random). Colorgorical palettes are as discriminable and are at least as preferable or more prefer-
able than the alternative palette sets. In sum, Colorgorical allows users to make customized color palettes that are, on average, as
effective as current industry standards by balancing the importance of discriminability and aesthetic preference.

Index Terms—Aesthetics in Visualization, Color Perception, Metrics & Benchmarks, Visual Design, Visualization

1 INTRODUCTION

We present an evaluation of Colorgorical (Fig. 2), a model and tool for
creating arbitrarily sized, preferable, and discriminable color palettes
for categorical information visualization (Fig. 1). As in other areas of
design, it is important that a visualization color palette is aesthetically
pleasing; but, unlike many other areas of design, visualization color
palettes must also be highly discriminable. Balancing discriminability
and aesthetic preference is challenging because they can be inversely
related (i.e., preference increases with hue similarity [30], whereas
discriminability decreases). Navigating this tradeoff requires design
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skill and experience, both beyond those of many visualization creators.
Colorgorical addresses this problem by operationalizing effec-

tive color palette selection with three color-scoring functions to bal-
ance discriminability and aesthetic preference: Perceptual Distance
(CIEDE2000) [32], Name Difference [8], and a quantified model of
color Pair Preference [30] (Sec. 3). A fourth, Name Uniqueness, was
originally included, but was later removed because it had little effect
on behavior (Sec. 6). With Colorgorical, color palette creation is sim-
plified so that users need only specify the number of desired colors
and drag sliders controlling color-scoring function importance to (1)
create custom palettes that the average individual would find prefer-
able while maintaining discriminability, and (2) explore how relative
weights on discriminability vs. preference affect palette appearance.
Users can further customize palettes by specifying desired hues and
by building onto existing palettes (Sec. 4).

We evaluated Colorgorical’s effectiveness in four ways: (1) runtime
benchmarks (Sec. 4), (2) discriminability and preference score analy-
sis (Sec. 5), (3) human-subject evaluation of different model settings
(Sec. 6), and (4) human-subject evaluation of Colorgorical compared
to industry standards (Sec. 7). We make the following contributions:

• We provide a technique to generate custom color palettes via
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user-defined importance of discriminability and preference
• We detail the relations between Perceptual Distance, Name Dif-

ference, Name Uniqueness, and Pair Preference scoring func-
tions

• We show how varying the relative weights of discriminability
and preference sliders affects human discrimination performance
and preference ratings

• We present evidence that Colorgorical palettes are as discrim-
inable and often more preferable than industry standard, profes-
sionally hand-made color palettes

Colorgorical combines three features, making it a novel approach
to palette design. First, it is designed specifically for visualization
rather than for general art and design applications. Second, it uses
empirically derived color preference data to inform categorical palette
generation [30]. Third, it approaches visualization palette design by
balancing categorical palette discriminability and preference.

2 RELATED WORK

Current color palette tools are typically designed based on three types
of strategies: discriminability optimization, color-term association
mapping, or harmonic template application. We describe these ap-
proaches and discuss how Colorgorical targets limitations of past re-
search.

2.1 Palette discriminability methods

A key issue in palette discriminability is whether a graphical mark can
be quickly and accurately identified. Healey demonstrated that this
problem can be addressed by using palettes whose colors are named
with the 10 Munsell hues and that maximize perceptual distance be-
tween colors (CIEDE1976, Sec. 3) [7]. Maxwell also developed a
discriminability-based technique to create categorical color palettes
for multidimensional datasets based on classification dissimilarity of
categories [16]. These approaches created discriminable palettes, but
each has multiple limitations for design more broadly: (1) they do
not address aesthetics, (2) Healey’s technique is constrained to 10 or
fewer color terms, and (3) they define perceptual distance using Eu-
clidean distance (Healey) or maximum scaled difference (Maxwell)
in CIELAB color space, which can be problematic due to perceptual
uniformity limitations [13] (i.e., the same distance can have different
perceptual consequences depending on the sampled region).

Colorgorical addresses these issues by (1) considering aesthetics in
addition to discriminability (Sec. 3) [30], (2) ing 153 crowdsourced
color terms compared to the 10 Munsell hues in Healey’s method, and
(3) using an updated perceptual distance function (CIEDE2000) that
improves perceptual uniformity in the distance metric [32].

The color-name associations in Colorgorical are based on Heer and
Stone’s color-name statistics (Sec. 3) [8], which are derived from
color-name association frequencies from the 153 most commonly-
used names from the XKCD color-name crowdsourcing survey [19].
Name Difference measures the difference in color-name association
frequency distributions between two colors. For example, green and
red colors have large name differences because green colors have
few associations with red names and vice versa. Presumably Name
Difference is related to Perceptual Distance, but it is possible that
they differ systematically, which we test in Sections 5 and 6. Name
Salience, which we call Name Uniqueness to avoid confusion with
color salience, captures the degree to which a color is specifically
named (highly associated with only a few colors) vs. broadly named
(moderately associated with many colors) (Fig. 1 in Supp. Mat.).

Another approach to designing discriminable palettes is for color
experts to make pre-defined palettes (e.g., ColorBrewer [6]). Typi-
cally made through iterative design, experts construct these palettes
by selecting colors that are discriminable under a variety of viewing
conditions (e.g., after photocopying) and that support specialized tasks
(e.g., ColorBrewer’s “Accent” palettes emphasize certain colors). Al-
though pre-made palettes are easy to use, they do not give visualization
creators design flexibility or customizability. And although guidelines
for hand-designing palettes exist [37], a visualization creator might not

want to spend time or effort to learn about palette design. Colorgorical
addresses this problem by allowing customization while building in
constraints on aesthetics and discriminability; however, we leave sup-
port for specialized palettes (e.g., accent colors) for future research.

2.2 Color-term tools

Another way to create categorical palettes is through color-term
associations. Crowdsourcing and linguistics-based approaches can
produce color-term associations that create semantically meaningful
palettes (e.g., a “mango ice cream” category might produce a light or-
ange) [11, 31]. Setlur and Stone show that various natural language
processing techniques can be used to mine color-semantic pairings
from large text datasets [31]. Colorgorical does not currently support
semantic mappings, but it is an exciting future direction.

2.3 Harmonic template tools

Many harmony-based categorical color palette tools are targeted for
general-purpose design and do not focus on visualization design con-
straints (e.g., discriminability). These tools create palettes based on
harmony principles in color theory [20, 22]. A common implemen-
tation of harmony is through harmonic templates based on hue rela-
tions [15], such as the two-color complementary relation that stems
from Itten’s version of harmony (e.g., blue and orange) [10]. For ex-
ample, Adobe Color creates 5-color palettes based on harmonic tem-
plates and optional image color analysis [21]. Similarly, Dial-a-color,
uses harmonic templates as a starting point and allows users to alter
color properties like lightness and saturation [18]. ACE lets users ma-
nipulate discrimination and harmony importance for interface design
by answering a series of questions in a text interface about each col-
ored interface component [17] (unlike ACE, Colorgorical is not lim-
ited to interface coloration and uses sliders to balance discrimination
and aesthetic preference rather than a text interface). Finally, the Har-
monious Color Scheme Generator constructs color palettes through
familial factors (promoting similarity along hue, saturation, or light-
ness dimensions) and rhythmic spans (sampling colors using a fixed
uniform interval along a color dimension) [9].

Harmonic templates were generated from color theory in art with-
out empirical validation [10], and do not necessarily correspond to
human judgments of harmony. For example, the notion that com-
plementary colors are harmonious is key to the notion of harmonic
templates. Yet humans judge complementary hues as among the
least harmonious and instead judge more similar hues as more har-
monious [23, 24, 30, 34].

Although the term “harmony” is often used interchangeably with
aesthetic preference [2], the two are not the same [24, 30]. Schloss and
Palmer demonstrated how they differ, where harmony was defined as
“how strongly an observer experiences the colors in the combination as
going or belonging together, regardless of whether the observer likes
the combination or not,” and preference is “how much an observer
likes a given pair of colors as a Gestalt, or whole” [30]. Although both
increased with hue similarity, pair preference relied more on prefer-
ence ratings for individual colors and on lightness contrast, whereas
harmony relied more on desaturation (i.e., pairs with less saturated
colors were more harmonious).

Colorgorical uses Schloss and Palmer’s pair preference model
(Sec. 3) [30] rather than harmony because we reasoned that how much
people like visualization palette colors is more central to the present
aims than how well they feel the colors go together.

3 BACKGROUND: MODEL SCORING FUNCTIONS

Colorgorical iteratively samples colors using three color discriminabil-
ity scores (Perceptual Distance, Name Difference, Name Uniqueness)
and a color preference score (Pair Preference). Colorgorical assumes
that discriminability and preference for large combinations of colors
can be predicted by these lower-order scores. Name Uniqueness was
ultimately removed from the model because it had little effect on dis-
criminability performance or preference (Sec. 6).

Fig. 2. A Colorgorical screenshot. Here a user has specified a hue filter
(left) and has generated a 4-color palette (detail). Users can list colors
in many color spaces and render colors in a variety of charts.

Each score operates in CIELAB. The L∗ axis of CIELAB approx-
imates a color’s lightness, the a∗ axis approximates its redness-to-
greenness, and the b∗ axis approximates its blueness-to-yellowness.
To support Name Difference and Name Uniqueness, we use a modifi-
cation of CIELAB that quantizes the space into 8,325 discrete colors
by sampling every 5 units along each axis starting at the origin [8].
Some scores also depend on CIE LCh, which is a polar representation
of the Euclidean CIELAB space. In CIE LCh, L∗ is the same as in
CIELAB, but the a∗ and b∗ axis are converted to chroma (C, radius)
and hue (h, angle).

3.1 Color discriminability scores

We used multiple discriminability scores because perceptual differ-
ence might differ from name difference. For instance, a chartreuse
(yellow-green) might be perceptually distinct from a green or yellow
but might be called green or yellow, making it easy to confuse with
other greens or yellows in a visualization when referenced by name.

3.1.1 CIEDE2000: Perceptual Distance

To calculate Perceptual Distance between two colors we use
CIEDE2000 (DE00) [32]. It is similar to the original CIEDE, DE76

(Euclidean CIELAB), but DE00 calculates distance in CIE LCh with a
hue rotation term (RT ) and corrections for lightness (SL), chroma (SC),
and hue (Sh) to improve perceptually uniformity [14].

DE76 =
√

∆L2 +∆a2 +∆b2 (1)
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3.1.2 Name Difference

Name Difference (ND) captures the degree to which two colors have
distinct color-name association frequency distributions [8]. Color-
name associations are mappings between colors and names (e.g.,
rgb(255,0,0) → “bright red”). The name data are composed of
the discretized CIELAB color space (C) described earlier, a list of 153
popular color names (W ), and a color-name association frequency ma-
trix (T ) that has C rows and W columns. The scores also rely on the
conditional probability of a color name w given any color in C:

p(w|c) = Tc,w/∑
w

Tc,w (3)

We calculate Name Difference using Hellinger distance [8]:

ND(c1,c2) =
√

1− ∑
w∈W

√

p(w|c1)p(w|c2) (4)

3.1.3 Name Uniqueness

Name Uniqueness (NU) captures the degree to which colors have
uniform distributions of color-name association frequencies. Colors
that have few strongly associated names (i.e., a focal distribution) re-
sult in lower scores, whereas colors that have many weakly associ-
ated names (i.e., a more-uniform distribution) result in higher scores.
Name Uniqueness is calculated by using the negative entropy of a
color’s name-association frequency distribution from the color-name-
association matrix (T ) and the list of color names (W ):

NU(c) =−H(p(W |c)) = ∑
w∈W

p(w|c)logp(w|c) (5)

Unlike the other two discriminability measures, Name Uniqueness
relies on individual colors rather than relations between other colors
within the palette. We believe this is a key reason why it was not
useful in the Colorgorcial model (Sec. 6).

3.2 Aesthetic preference score: Pair Preference

Pair Preference (PP) is based on a linear regression model used to pre-
dict pair preferences from three color-appearance and color-relation
factors, which was previously operationalized in Munsell space [30].
The best-fit model explained 53.5% of the variance in pair preference
judgments with three factors: coolness (κ), hue similarity ∆H, and
lightness contrast ∆L. We have altered the original equation to use
CIE LCh rather than Munsell color space coordinates, as is reflected
in the hue similarity and lightness contrast terms1. Coolness scores
are calculated in CIE LCh using a linear interpolation of the original
32 color-coolness mappings, which approximates the number of hue-
steps a color is from Munsell 10R, such that greenish blues are cool
and orangish reds are not cool (Supp. Mat.). The Pair Preference scor-
ing function reflects people’s preference for color combinations that
contain cool colors that differ in lightness and are similar in hue.

PP(c1,c2) = 75.15(κ1 +κ2)+47.61|∆L|−46.42|∆H| (6)

4 COLORGORICAL MODEL

Colorgorical generates color palettes using iterative semi-random sam-
pling. Users specify the number of desired colors and use sliders to
set the relative balance of aesthetic preference and discriminability
(Sec. 3). Generated palettes are displayed to the user as a swatch, map,
bar chart, and scatterplot, which highlights how the discriminability
may shift with different types and sizes of graphical marks [4, 33].

4.1 Minimum discriminability & preference assertions

Each palette is built from an 8,325-color discretized D65 CIELAB
space (Sec. 3) and is additionally filtered in three ways to help increase
discriminability and preference, which we describe below: (1) notice-
able difference; (2) lightness clamping (from L∗= 25 to L∗= 85) and
(3) filtering the dark yellow (generally disliked) region of color space.
Although the same RGB coordinates can result in different CIELAB
colors on different monitors if monitors are uncalibrated, Stone et al.
show that using a fixed correspondence between D65 CIELAB and
RGB can be used effectively for online tools in practice [33].

Discriminability The model enforces a lower discriminability
bound by sampling noticeably different colors using Stone et al.’s no-
ticeable difference function, which provides a minimum CIELAB in-
terval required to discriminate the colors of two graphical marks more
than 50% of the time (based on their physical size) [33]. We use a
small, conservative visual angle in our calculations ( 1

/

3
◦
) and multi-

ply the function’s suggested interval by three for extra caution.
To ensure discriminability we also exclude colors that are lighter

than L = 85 and darker than L = 25 so that all colors are visible on
black or white backgrounds (Lblack = 0, Lwhite = 100). Colorgorical
only includes RGB-valid colors.

1The CIE LCh model explains 51.8% of the variance in Schloss and

Palmer’s preference data (their Munsell-based model explains 53.5%).
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user-defined importance of discriminability and preference
• We detail the relations between Perceptual Distance, Name Dif-

ference, Name Uniqueness, and Pair Preference scoring func-
tions

• We show how varying the relative weights of discriminability
and preference sliders affects human discrimination performance
and preference ratings

• We present evidence that Colorgorical palettes are as discrim-
inable and often more preferable than industry standard, profes-
sionally hand-made color palettes

Colorgorical combines three features, making it a novel approach
to palette design. First, it is designed specifically for visualization
rather than for general art and design applications. Second, it uses
empirically derived color preference data to inform categorical palette
generation [30]. Third, it approaches visualization palette design by
balancing categorical palette discriminability and preference.

2 RELATED WORK

Current color palette tools are typically designed based on three types
of strategies: discriminability optimization, color-term association
mapping, or harmonic template application. We describe these ap-
proaches and discuss how Colorgorical targets limitations of past re-
search.

2.1 Palette discriminability methods

A key issue in palette discriminability is whether a graphical mark can
be quickly and accurately identified. Healey demonstrated that this
problem can be addressed by using palettes whose colors are named
with the 10 Munsell hues and that maximize perceptual distance be-
tween colors (CIEDE1976, Sec. 3) [7]. Maxwell also developed a
discriminability-based technique to create categorical color palettes
for multidimensional datasets based on classification dissimilarity of
categories [16]. These approaches created discriminable palettes, but
each has multiple limitations for design more broadly: (1) they do
not address aesthetics, (2) Healey’s technique is constrained to 10 or
fewer color terms, and (3) they define perceptual distance using Eu-
clidean distance (Healey) or maximum scaled difference (Maxwell)
in CIELAB color space, which can be problematic due to perceptual
uniformity limitations [13] (i.e., the same distance can have different
perceptual consequences depending on the sampled region).

Colorgorical addresses these issues by (1) considering aesthetics in
addition to discriminability (Sec. 3) [30], (2) ing 153 crowdsourced
color terms compared to the 10 Munsell hues in Healey’s method, and
(3) using an updated perceptual distance function (CIEDE2000) that
improves perceptual uniformity in the distance metric [32].

The color-name associations in Colorgorical are based on Heer and
Stone’s color-name statistics (Sec. 3) [8], which are derived from
color-name association frequencies from the 153 most commonly-
used names from the XKCD color-name crowdsourcing survey [19].
Name Difference measures the difference in color-name association
frequency distributions between two colors. For example, green and
red colors have large name differences because green colors have
few associations with red names and vice versa. Presumably Name
Difference is related to Perceptual Distance, but it is possible that
they differ systematically, which we test in Sections 5 and 6. Name
Salience, which we call Name Uniqueness to avoid confusion with
color salience, captures the degree to which a color is specifically
named (highly associated with only a few colors) vs. broadly named
(moderately associated with many colors) (Fig. 1 in Supp. Mat.).

Another approach to designing discriminable palettes is for color
experts to make pre-defined palettes (e.g., ColorBrewer [6]). Typi-
cally made through iterative design, experts construct these palettes
by selecting colors that are discriminable under a variety of viewing
conditions (e.g., after photocopying) and that support specialized tasks
(e.g., ColorBrewer’s “Accent” palettes emphasize certain colors). Al-
though pre-made palettes are easy to use, they do not give visualization
creators design flexibility or customizability. And although guidelines
for hand-designing palettes exist [37], a visualization creator might not

want to spend time or effort to learn about palette design. Colorgorical
addresses this problem by allowing customization while building in
constraints on aesthetics and discriminability; however, we leave sup-
port for specialized palettes (e.g., accent colors) for future research.

2.2 Color-term tools

Another way to create categorical palettes is through color-term
associations. Crowdsourcing and linguistics-based approaches can
produce color-term associations that create semantically meaningful
palettes (e.g., a “mango ice cream” category might produce a light or-
ange) [11, 31]. Setlur and Stone show that various natural language
processing techniques can be used to mine color-semantic pairings
from large text datasets [31]. Colorgorical does not currently support
semantic mappings, but it is an exciting future direction.

2.3 Harmonic template tools

Many harmony-based categorical color palette tools are targeted for
general-purpose design and do not focus on visualization design con-
straints (e.g., discriminability). These tools create palettes based on
harmony principles in color theory [20, 22]. A common implemen-
tation of harmony is through harmonic templates based on hue rela-
tions [15], such as the two-color complementary relation that stems
from Itten’s version of harmony (e.g., blue and orange) [10]. For ex-
ample, Adobe Color creates 5-color palettes based on harmonic tem-
plates and optional image color analysis [21]. Similarly, Dial-a-color,
uses harmonic templates as a starting point and allows users to alter
color properties like lightness and saturation [18]. ACE lets users ma-
nipulate discrimination and harmony importance for interface design
by answering a series of questions in a text interface about each col-
ored interface component [17] (unlike ACE, Colorgorical is not lim-
ited to interface coloration and uses sliders to balance discrimination
and aesthetic preference rather than a text interface). Finally, the Har-
monious Color Scheme Generator constructs color palettes through
familial factors (promoting similarity along hue, saturation, or light-
ness dimensions) and rhythmic spans (sampling colors using a fixed
uniform interval along a color dimension) [9].

Harmonic templates were generated from color theory in art with-
out empirical validation [10], and do not necessarily correspond to
human judgments of harmony. For example, the notion that com-
plementary colors are harmonious is key to the notion of harmonic
templates. Yet humans judge complementary hues as among the
least harmonious and instead judge more similar hues as more har-
monious [23, 24, 30, 34].

Although the term “harmony” is often used interchangeably with
aesthetic preference [2], the two are not the same [24, 30]. Schloss and
Palmer demonstrated how they differ, where harmony was defined as
“how strongly an observer experiences the colors in the combination as
going or belonging together, regardless of whether the observer likes
the combination or not,” and preference is “how much an observer
likes a given pair of colors as a Gestalt, or whole” [30]. Although both
increased with hue similarity, pair preference relied more on prefer-
ence ratings for individual colors and on lightness contrast, whereas
harmony relied more on desaturation (i.e., pairs with less saturated
colors were more harmonious).

Colorgorical uses Schloss and Palmer’s pair preference model
(Sec. 3) [30] rather than harmony because we reasoned that how much
people like visualization palette colors is more central to the present
aims than how well they feel the colors go together.

3 BACKGROUND: MODEL SCORING FUNCTIONS

Colorgorical iteratively samples colors using three color discriminabil-
ity scores (Perceptual Distance, Name Difference, Name Uniqueness)
and a color preference score (Pair Preference). Colorgorical assumes
that discriminability and preference for large combinations of colors
can be predicted by these lower-order scores. Name Uniqueness was
ultimately removed from the model because it had little effect on dis-
criminability performance or preference (Sec. 6).

Fig. 2. A Colorgorical screenshot. Here a user has specified a hue filter
(left) and has generated a 4-color palette (detail). Users can list colors
in many color spaces and render colors in a variety of charts.

Each score operates in CIELAB. The L∗ axis of CIELAB approx-
imates a color’s lightness, the a∗ axis approximates its redness-to-
greenness, and the b∗ axis approximates its blueness-to-yellowness.
To support Name Difference and Name Uniqueness, we use a modifi-
cation of CIELAB that quantizes the space into 8,325 discrete colors
by sampling every 5 units along each axis starting at the origin [8].
Some scores also depend on CIE LCh, which is a polar representation
of the Euclidean CIELAB space. In CIE LCh, L∗ is the same as in
CIELAB, but the a∗ and b∗ axis are converted to chroma (C, radius)
and hue (h, angle).

3.1 Color discriminability scores

We used multiple discriminability scores because perceptual differ-
ence might differ from name difference. For instance, a chartreuse
(yellow-green) might be perceptually distinct from a green or yellow
but might be called green or yellow, making it easy to confuse with
other greens or yellows in a visualization when referenced by name.

3.1.1 CIEDE2000: Perceptual Distance

To calculate Perceptual Distance between two colors we use
CIEDE2000 (DE00) [32]. It is similar to the original CIEDE, DE76

(Euclidean CIELAB), but DE00 calculates distance in CIE LCh with a
hue rotation term (RT ) and corrections for lightness (SL), chroma (SC),
and hue (Sh) to improve perceptually uniformity [14].
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3.1.2 Name Difference

Name Difference (ND) captures the degree to which two colors have
distinct color-name association frequency distributions [8]. Color-
name associations are mappings between colors and names (e.g.,
rgb(255,0,0) → “bright red”). The name data are composed of
the discretized CIELAB color space (C) described earlier, a list of 153
popular color names (W ), and a color-name association frequency ma-
trix (T ) that has C rows and W columns. The scores also rely on the
conditional probability of a color name w given any color in C:

p(w|c) = Tc,w/∑
w

Tc,w (3)

We calculate Name Difference using Hellinger distance [8]:

ND(c1,c2) =
√

1− ∑
w∈W

√

p(w|c1)p(w|c2) (4)

3.1.3 Name Uniqueness

Name Uniqueness (NU) captures the degree to which colors have
uniform distributions of color-name association frequencies. Colors
that have few strongly associated names (i.e., a focal distribution) re-
sult in lower scores, whereas colors that have many weakly associ-
ated names (i.e., a more-uniform distribution) result in higher scores.
Name Uniqueness is calculated by using the negative entropy of a
color’s name-association frequency distribution from the color-name-
association matrix (T ) and the list of color names (W ):

NU(c) =−H(p(W |c)) = ∑
w∈W

p(w|c)logp(w|c) (5)

Unlike the other two discriminability measures, Name Uniqueness
relies on individual colors rather than relations between other colors
within the palette. We believe this is a key reason why it was not
useful in the Colorgorcial model (Sec. 6).

3.2 Aesthetic preference score: Pair Preference

Pair Preference (PP) is based on a linear regression model used to pre-
dict pair preferences from three color-appearance and color-relation
factors, which was previously operationalized in Munsell space [30].
The best-fit model explained 53.5% of the variance in pair preference
judgments with three factors: coolness (κ), hue similarity ∆H, and
lightness contrast ∆L. We have altered the original equation to use
CIE LCh rather than Munsell color space coordinates, as is reflected
in the hue similarity and lightness contrast terms1. Coolness scores
are calculated in CIE LCh using a linear interpolation of the original
32 color-coolness mappings, which approximates the number of hue-
steps a color is from Munsell 10R, such that greenish blues are cool
and orangish reds are not cool (Supp. Mat.). The Pair Preference scor-
ing function reflects people’s preference for color combinations that
contain cool colors that differ in lightness and are similar in hue.

PP(c1,c2) = 75.15(κ1 +κ2)+47.61|∆L|−46.42|∆H| (6)

4 COLORGORICAL MODEL

Colorgorical generates color palettes using iterative semi-random sam-
pling. Users specify the number of desired colors and use sliders to
set the relative balance of aesthetic preference and discriminability
(Sec. 3). Generated palettes are displayed to the user as a swatch, map,
bar chart, and scatterplot, which highlights how the discriminability
may shift with different types and sizes of graphical marks [4, 33].

4.1 Minimum discriminability & preference assertions

Each palette is built from an 8,325-color discretized D65 CIELAB
space (Sec. 3) and is additionally filtered in three ways to help increase
discriminability and preference, which we describe below: (1) notice-
able difference; (2) lightness clamping (from L∗= 25 to L∗= 85) and
(3) filtering the dark yellow (generally disliked) region of color space.
Although the same RGB coordinates can result in different CIELAB
colors on different monitors if monitors are uncalibrated, Stone et al.
show that using a fixed correspondence between D65 CIELAB and
RGB can be used effectively for online tools in practice [33].

Discriminability The model enforces a lower discriminability
bound by sampling noticeably different colors using Stone et al.’s no-
ticeable difference function, which provides a minimum CIELAB in-
terval required to discriminate the colors of two graphical marks more
than 50% of the time (based on their physical size) [33]. We use a
small, conservative visual angle in our calculations ( 1

/

3
◦
) and multi-

ply the function’s suggested interval by three for extra caution.
To ensure discriminability we also exclude colors that are lighter

than L = 85 and darker than L = 25 so that all colors are visible on
black or white backgrounds (Lblack = 0, Lwhite = 100). Colorgorical
only includes RGB-valid colors.

1The CIE LCh model explains 51.8% of the variance in Schloss and

Palmer’s preference data (their Munsell-based model explains 53.5%).
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Remove indiscriminable neighbors from color space

RETURN PALETTE

IF palette complete

OR color space is empty

ELSE add another color

Fig. 3. Diagram of Colorgorical palette construction procedure.

Preference Colorgorical excludes the dark yellowish-green re-
gion of CIE LCh, which has strongly disliked colors, on average,
across many cultures [26, 35, 36]. We define this region as L ∈ [35,75]
and H ∈ [85◦,114◦]. While there are individual differences in prefer-
ence [25, 30] and some observers may like these colors [29], the goal
is to cater to the average observer. This filter was especially important
for generating aesthetically preferable discriminable palettes because
of the way Pair Preference and discriminability functions interact. In
the Pair Preference equation, the coolness term biases selection toward
bluish hues and the lightness term biases selection of contrasting light-
ness. The discriminability functions bias selection for colors that are
far apart in CIELAB color space (i.e., contrasting hue and lightness).
Once bluish hues are selected, discriminability would be promoted in
subsequent color selections by selecting opposite, yellowish hues of a
different lightness level (opposite ends of the b∗ and L∗ axes). If the
blues are remotely light, then selected yellows will be the dark yellows
that people generally dislike. The removal of this region still retained
a large region of color space that was sufficiently discriminable to pair
with blues, while increasing typical aesthetic palette preference.

To maximize preference within a defined balance, the model gener-
ates 10 palettes and returns the palette with the highest minimum-Pair-
Preference given all color pairings in each palette.

4.2 User-defined model parameters

In addition to specifying the number of colors and manipulating dis-
criminability and preference sliders, users can also configure two op-
tional parameters. First, they can limit color sampling to certain hue
ranges (e.g., reds only, or reds and blues), which supports tasks such as
designing around brand colors. Second, users can supply an existing
palette for Colorgorical to build on. If users provide a palette, Color-
gorical rounds the input to the nearest quantized CIELAB color and
adds new colors until the palette reaches the desired size.

4.3 Palette construction process

Palettes are generated in three steps: (1) initialize, (2) start a palette
with the first color, and (3) iteratively add new colors (Fig. 3). Col-
orgorical can typically generate palettes with up to 22 colors before
exhausting color space. However, it is inadvisable to use that many
colors due to perceptual limitations [5]. If no more colors can be sam-
pled, Colorgorical returns a partial palette and an error message.

4.3.1 Step 1: Initialize

Initialization starts by loading CIELAB space, color coolness scores,
and color-name associations into memory. A CIELAB subspace is
also loaded into memory, which samples every 15 units along each
CIELAB axis and is used along with a precomputed Pair Preference
score matrix to pick the first palette color. We use a coarser subspace to
select the first color because using precomputed Pair-Preference scores
for all pairs of 8,325-colors takes too long for interactivity due to com-
binatorial explosion. Color space can be filtered based on parameters
provided by the user (e.g., hue filters). After applying optional fil-
ters, the model limits the subsampled space colors (c) and the color

pair preference matrix (Φ) to highly preferable colors (i.e., no dark
yellows) using a standard deviation (SD) preference threshold (Eq. 7).
The threshold removes any color-pair row from Φ whose pair pref-
erence score is less than the standard deviation-based limit. Then,
the starting color is sampled from the unique colors remaining in Φ’s
color-pair rows.

threshold(c) = Φc > max(Φ)−0.75∗SD(Φ) (7)

The last initialization step also defines a noticeable difference with
Stone et al.’s CIELAB intervals described above, which removes col-
ors that are too similar to each sampled color. Sampled color dif-
ferences must have at least one axis above the following intervals:
∆L = 22.747,∆a = 31.427,∆b = 44.757.

4.3.2 Step 2: Start palette

The first color of a palette is selected by randomly sampling a seed
color from the remaining colors after Step 1. Next, all colors that are
not noticeably different from the seed are removed from color space
using the CIELAB intervals defined in Step 1. Sampling is skipped if
users provide their own seed color(s), but indiscriminable neighboring
colors are still eliminated.

4.3.3 Step 3: Add to palette

To add a new color, the model computes scores for all remaining col-
ors using a weighted sum (Eq. 8). This function sums each of the

four minimum palette scores (�Ψ) with user-defined weights (�w), given
all possible scores between a potential new color (c) and the already
picked colors (P). The model uses minimum palette scores assum-
ing that a palette is only as discriminable or preferable as its lowest
score. There is also a hue-dependent penalty term (τ) to reduce the
likelihood of sampling a color bordering the dark yellow filter region.
The new color is then randomly sampled from colors that fall above a
score threshold (Eq. 7, where Φ is now weighted-sum scores). Non-
discriminable colors are removed after sampling.

score(c,P) = τ(�w ·�Ψ)

τ =



















0.75, if 115◦ < chue < 138◦ ∧ cL ≤ 45

0.8, if 70◦ ≤ chue ≤ 115◦ ∧45 < cL ≤ 75

0.85, if 70◦ ≤ chue ≤ 115◦ ∧ cL > 75

1, otherwise

(8)

4.4 Implementation and Performance

Colorgorical is implemented in C-accelerated Python. To evaluate av-
erage model runtime (50 runs) as a function of palette size (1 to 20
colors), we profiled single-palette generation on a Mid 2012 MacBook
Pro Retina with a 2.6 GHz Intel Core i7 CPU and 16GB 1600MHz
DDR3 RAM. Average initialization time was 140ms (SEM = 0.004).
If a palette was returned before reaching the required number of col-
ors, it was discarded and the test was run again. Runtime performance
increased linearly in the number of colors such that adding a color
increased runtime by 17.6ms on average (Supp. Mat.).

5 PALETTE SCORE EVALUATION

Before conducting human-subject testing, we first tested whether any
of Colorgorical’s scoring functions (i.e., Perceptual Distance, Name
Difference, Name Uniqueness, and Pair Preference) could be removed
from the model to simplify its design without significantly affecting
palette output. For instance, if Perceptual Distance were to explain
most of the variance in Name Difference scores, then the Name Dif-
ference scoring function could be removed from the model with little
effect on palette output.

We examined the similarity among the four Colorgorical scoring
functions using multiple linear regressions to predict 39,600 palette
scores for each palette scoring function (Sec. 3) from the three re-
maining functions (e.g., predicting Perceptual Distance from Name
Difference, Name Uniqueness, and Pair Preference). Palette scores are
the minimum palette scoring function output given all color pairs in a

palette. We use the minimum score because we assumed that a palette
is only as preferable or discriminable as its lowest pair. The num-
ber 39,600 stems from the full range of possible Colorgorical slider
settings and 3 palette sizes (66 settings, {3,5,8}-colors, 200 repeats).
The 66 settings were made from the different unique combinations
from dragging each of the four sliders to 0%, 50%, or 100%, which
ignore duplicate settings encountered when moving one or more slid-
ers to 0%.

We also examined how the four palette scores changed with palette
size. Below we highlight results and implications from our analyses,
and the methods and full results are in Supplementary Material.

Both Perceptual Distance and Name Difference were strong posi-
tive predictors of one another. Name Uniqueness was always a weak
negative predictor of the other scores. Pair Preference was always
a strong negative predictor of Perceptual Distance and Name Differ-
ence. Further, Pair Preference was more strongly related to Name Dif-
ference than to Perceptual Distance. Given that palette scores in each
palette scoring function were significantly predicted by all three of the
other palette scoring functions, we concluded that each scoring func-
tion measured sufficiently different color information to justify keep-
ing them all in the model for Experiment 1.

6 EXP. 1: MODEL HUMAN-SUBJECT EVALUATION

Experiment 1 tested how palette discriminability performance and
preference ratings varied as the relative weights on the Colorgorical
sliders varied (i.e., the relative importance of each scoring function;
Sec. 4). We also identified which slider settings produced the most dis-
criminable or preferable palettes to prepare for a comparison between
Colorgorical and current industry standards in Experiment 2 (Sec. 7).

Experiment 1 used the same representative palettes as in Section 5,
which were analogous to the slider settings produced by moving each
to either 0%, 50%, or 100% for 3-, 5-, and 8-color palettes.

Discrimination performance and preference were assessed using
two difference tasks (Fig. 4). In the discrimination task, participants
reported which side of a map had more counties of a target color, pro-
viding data on number of errors and response time (RT). In the aes-
thetic preference task, participants rated how much they liked the color
combinations in each palette. We predicted that:

P1 Palettes with fewer color would be more discriminable
P2 Discrimination RT and error would correlate in a strong negative

direction with Perceptual Distance and in a strong positive di-
rection with Pair Preference, whereas preference ratings would
show the opposite pattern

P3 Palette size would modulate the discriminability and preference
ratings associated with each slider setting.

P4 Slider settings would significantly predict discrimination perfor-
mance and preference ratings

P1 is based on previous evidence that visualizations with more col-
ors are harder to process [5]. P2 extends Palette Score Evaluation
findings that Perceptual Distance and Name Difference negatively pre-
dicted Pair Preference. P3 builds on the first two predictions: based
on P1 we expect that palette size will modulate the discriminability
of slider settings, and based on P2 we expect that preference will be
negatively correlated with discriminability. P4 makes two strings of
assumptions based on the Palette Score Evaluation: (1) the trade-off
between discrimination and preference palette scores will extend to be-
havior (P2) and (2) the relative importance of scoring functions (i.e.,
slider settings) would affect behavior in the same manner as palette
scores (e.g., a higher relative importance of Pair Preference will pro-
duce higher Pair Preference palette scores). By transitivity, we predict
that slider settings will be indicative of behavior.

6.1 Methods

6.1.1 Participants

77 participants completed the discrimination task and 60 completed
the preference rating task (recruited through Amazon Mechanical

Discrimination Example Preference Rating Example

not at all neutral very much

Neek

Blee

Kwim

Fig. 4. Discrimination and preference rating task stimuli. The discrimi-
nation task asked users which side had more “Neek” counties (← and
→ keys). The preference rating task asked users to click on the slider.

Turk, $3 compensation). Palette size (3-, 5-, 8-colors) was a between-
subjects factor. For quality control, we determined a priori to discard
participants who were < 60% accurate across all trials in the discrim-
inability task (3-color: n = 3; 5-color: n = 6; 8-color: n = 8). No
participants were discarded in the preference task. In the final datasets
there were 20 participants per palette size in each task, and discard
frequency did not significantly differ between palette size conditions
(χ2(2) = 1.793, p = 0.408). All self-reported having normal color vi-
sion and gave informed consent. The Brown University IRB approved
the experiment protocol.

6.1.2 Design & Displays

The experimental designs for the discrimination and preference tasks
were similar. In both, each participant saw 660 palettes from 66 slider
settings (see Sec. 5 for setting information) with 10 different color
palettes within each slider setting (treated as repetitions). The specific
colors in each palette varied across participants (simulating different
runs of Colorgorical), but were generated with the same experimental
design. Palette size varied between-subjects (3, 5, or 8 colors).

The palettes that comprised the displays for the discrimination task
were also used for the preference task, such that each discrimination
participant was yoked to a preference participant (i.e., both saw the
same palettes). Palettes were displayed on a predefined map of 554
counties in the U.S. (300×300 pixels). The map itself differed slightly
based on the task (Fig. 4).

For the discrimination task, a 5-pixel-wide contour bisected the map
(adhering to county borders). The contour was black and the county
borders were white so that both would fall outside of Colorlogical’s de-
fault lightness sampling range (L ∈ [25,85]; LBlack = 0;LWhite = 100).
The size of the counties on each side were slightly altered so they were
approximately equal (left: 165 px; right: 163 px). A legend rendered
to the right of each map assigned each palette color to a nonsense word
category. The target “Neek” color was always at the top of the legend
to prevent participants from having to search for the target color. One
side of the map had over-represented target color (“Neek”; 1.5× more
frequent on one side than the base rate) and the opposite side had an
over-represented distractor color (1.3× more frequent). The target side
was left/right balanced across trials. Based on our assumption that a
palette is only as effective as its least discriminable pair of colors, the
target and distractor colors were always the palette colors with the
lowest and second-lowest Perceptual Distance scores compared with
all other colors in the palette, respectively.

In the preference task, there was no dividing contour and no legend,
the colors were roughly equal in proportion, and they were randomly
assigned to positions across the map (no left/right asymmetry). Below
the map there was a 300-pixel-wide continuous response slider scale
ranging from -100 to 100 with labeled extrema and midpoint (left: “not
at all”; right: “very much”; midpoint: “neutral”) [30]. The scale was
initialized with the slider set to “neutral” to avoid biasing participants.
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Fig. 3. Diagram of Colorgorical palette construction procedure.

Preference Colorgorical excludes the dark yellowish-green re-
gion of CIE LCh, which has strongly disliked colors, on average,
across many cultures [26, 35, 36]. We define this region as L ∈ [35,75]
and H ∈ [85◦,114◦]. While there are individual differences in prefer-
ence [25, 30] and some observers may like these colors [29], the goal
is to cater to the average observer. This filter was especially important
for generating aesthetically preferable discriminable palettes because
of the way Pair Preference and discriminability functions interact. In
the Pair Preference equation, the coolness term biases selection toward
bluish hues and the lightness term biases selection of contrasting light-
ness. The discriminability functions bias selection for colors that are
far apart in CIELAB color space (i.e., contrasting hue and lightness).
Once bluish hues are selected, discriminability would be promoted in
subsequent color selections by selecting opposite, yellowish hues of a
different lightness level (opposite ends of the b∗ and L∗ axes). If the
blues are remotely light, then selected yellows will be the dark yellows
that people generally dislike. The removal of this region still retained
a large region of color space that was sufficiently discriminable to pair
with blues, while increasing typical aesthetic palette preference.

To maximize preference within a defined balance, the model gener-
ates 10 palettes and returns the palette with the highest minimum-Pair-
Preference given all color pairings in each palette.

4.2 User-defined model parameters

In addition to specifying the number of colors and manipulating dis-
criminability and preference sliders, users can also configure two op-
tional parameters. First, they can limit color sampling to certain hue
ranges (e.g., reds only, or reds and blues), which supports tasks such as
designing around brand colors. Second, users can supply an existing
palette for Colorgorical to build on. If users provide a palette, Color-
gorical rounds the input to the nearest quantized CIELAB color and
adds new colors until the palette reaches the desired size.

4.3 Palette construction process

Palettes are generated in three steps: (1) initialize, (2) start a palette
with the first color, and (3) iteratively add new colors (Fig. 3). Col-
orgorical can typically generate palettes with up to 22 colors before
exhausting color space. However, it is inadvisable to use that many
colors due to perceptual limitations [5]. If no more colors can be sam-
pled, Colorgorical returns a partial palette and an error message.

4.3.1 Step 1: Initialize

Initialization starts by loading CIELAB space, color coolness scores,
and color-name associations into memory. A CIELAB subspace is
also loaded into memory, which samples every 15 units along each
CIELAB axis and is used along with a precomputed Pair Preference
score matrix to pick the first palette color. We use a coarser subspace to
select the first color because using precomputed Pair-Preference scores
for all pairs of 8,325-colors takes too long for interactivity due to com-
binatorial explosion. Color space can be filtered based on parameters
provided by the user (e.g., hue filters). After applying optional fil-
ters, the model limits the subsampled space colors (c) and the color

pair preference matrix (Φ) to highly preferable colors (i.e., no dark
yellows) using a standard deviation (SD) preference threshold (Eq. 7).
The threshold removes any color-pair row from Φ whose pair pref-
erence score is less than the standard deviation-based limit. Then,
the starting color is sampled from the unique colors remaining in Φ’s
color-pair rows.

threshold(c) = Φc > max(Φ)−0.75∗SD(Φ) (7)

The last initialization step also defines a noticeable difference with
Stone et al.’s CIELAB intervals described above, which removes col-
ors that are too similar to each sampled color. Sampled color dif-
ferences must have at least one axis above the following intervals:
∆L = 22.747,∆a = 31.427,∆b = 44.757.

4.3.2 Step 2: Start palette

The first color of a palette is selected by randomly sampling a seed
color from the remaining colors after Step 1. Next, all colors that are
not noticeably different from the seed are removed from color space
using the CIELAB intervals defined in Step 1. Sampling is skipped if
users provide their own seed color(s), but indiscriminable neighboring
colors are still eliminated.

4.3.3 Step 3: Add to palette

To add a new color, the model computes scores for all remaining col-
ors using a weighted sum (Eq. 8). This function sums each of the

four minimum palette scores (�Ψ) with user-defined weights (�w), given
all possible scores between a potential new color (c) and the already
picked colors (P). The model uses minimum palette scores assum-
ing that a palette is only as discriminable or preferable as its lowest
score. There is also a hue-dependent penalty term (τ) to reduce the
likelihood of sampling a color bordering the dark yellow filter region.
The new color is then randomly sampled from colors that fall above a
score threshold (Eq. 7, where Φ is now weighted-sum scores). Non-
discriminable colors are removed after sampling.

score(c,P) = τ(�w ·�Ψ)

τ =



















0.75, if 115◦ < chue < 138◦ ∧ cL ≤ 45

0.8, if 70◦ ≤ chue ≤ 115◦ ∧45 < cL ≤ 75

0.85, if 70◦ ≤ chue ≤ 115◦ ∧ cL > 75

1, otherwise

(8)

4.4 Implementation and Performance

Colorgorical is implemented in C-accelerated Python. To evaluate av-
erage model runtime (50 runs) as a function of palette size (1 to 20
colors), we profiled single-palette generation on a Mid 2012 MacBook
Pro Retina with a 2.6 GHz Intel Core i7 CPU and 16GB 1600MHz
DDR3 RAM. Average initialization time was 140ms (SEM = 0.004).
If a palette was returned before reaching the required number of col-
ors, it was discarded and the test was run again. Runtime performance
increased linearly in the number of colors such that adding a color
increased runtime by 17.6ms on average (Supp. Mat.).

5 PALETTE SCORE EVALUATION

Before conducting human-subject testing, we first tested whether any
of Colorgorical’s scoring functions (i.e., Perceptual Distance, Name
Difference, Name Uniqueness, and Pair Preference) could be removed
from the model to simplify its design without significantly affecting
palette output. For instance, if Perceptual Distance were to explain
most of the variance in Name Difference scores, then the Name Dif-
ference scoring function could be removed from the model with little
effect on palette output.

We examined the similarity among the four Colorgorical scoring
functions using multiple linear regressions to predict 39,600 palette
scores for each palette scoring function (Sec. 3) from the three re-
maining functions (e.g., predicting Perceptual Distance from Name
Difference, Name Uniqueness, and Pair Preference). Palette scores are
the minimum palette scoring function output given all color pairs in a

palette. We use the minimum score because we assumed that a palette
is only as preferable or discriminable as its lowest pair. The num-
ber 39,600 stems from the full range of possible Colorgorical slider
settings and 3 palette sizes (66 settings, {3,5,8}-colors, 200 repeats).
The 66 settings were made from the different unique combinations
from dragging each of the four sliders to 0%, 50%, or 100%, which
ignore duplicate settings encountered when moving one or more slid-
ers to 0%.

We also examined how the four palette scores changed with palette
size. Below we highlight results and implications from our analyses,
and the methods and full results are in Supplementary Material.

Both Perceptual Distance and Name Difference were strong posi-
tive predictors of one another. Name Uniqueness was always a weak
negative predictor of the other scores. Pair Preference was always
a strong negative predictor of Perceptual Distance and Name Differ-
ence. Further, Pair Preference was more strongly related to Name Dif-
ference than to Perceptual Distance. Given that palette scores in each
palette scoring function were significantly predicted by all three of the
other palette scoring functions, we concluded that each scoring func-
tion measured sufficiently different color information to justify keep-
ing them all in the model for Experiment 1.

6 EXP. 1: MODEL HUMAN-SUBJECT EVALUATION

Experiment 1 tested how palette discriminability performance and
preference ratings varied as the relative weights on the Colorgorical
sliders varied (i.e., the relative importance of each scoring function;
Sec. 4). We also identified which slider settings produced the most dis-
criminable or preferable palettes to prepare for a comparison between
Colorgorical and current industry standards in Experiment 2 (Sec. 7).

Experiment 1 used the same representative palettes as in Section 5,
which were analogous to the slider settings produced by moving each
to either 0%, 50%, or 100% for 3-, 5-, and 8-color palettes.

Discrimination performance and preference were assessed using
two difference tasks (Fig. 4). In the discrimination task, participants
reported which side of a map had more counties of a target color, pro-
viding data on number of errors and response time (RT). In the aes-
thetic preference task, participants rated how much they liked the color
combinations in each palette. We predicted that:

P1 Palettes with fewer color would be more discriminable
P2 Discrimination RT and error would correlate in a strong negative

direction with Perceptual Distance and in a strong positive di-
rection with Pair Preference, whereas preference ratings would
show the opposite pattern

P3 Palette size would modulate the discriminability and preference
ratings associated with each slider setting.

P4 Slider settings would significantly predict discrimination perfor-
mance and preference ratings

P1 is based on previous evidence that visualizations with more col-
ors are harder to process [5]. P2 extends Palette Score Evaluation
findings that Perceptual Distance and Name Difference negatively pre-
dicted Pair Preference. P3 builds on the first two predictions: based
on P1 we expect that palette size will modulate the discriminability
of slider settings, and based on P2 we expect that preference will be
negatively correlated with discriminability. P4 makes two strings of
assumptions based on the Palette Score Evaluation: (1) the trade-off
between discrimination and preference palette scores will extend to be-
havior (P2) and (2) the relative importance of scoring functions (i.e.,
slider settings) would affect behavior in the same manner as palette
scores (e.g., a higher relative importance of Pair Preference will pro-
duce higher Pair Preference palette scores). By transitivity, we predict
that slider settings will be indicative of behavior.

6.1 Methods

6.1.1 Participants

77 participants completed the discrimination task and 60 completed
the preference rating task (recruited through Amazon Mechanical

Discrimination Example Preference Rating Example

not at all neutral very much

Neek

Blee

Kwim

Fig. 4. Discrimination and preference rating task stimuli. The discrimi-
nation task asked users which side had more “Neek” counties (← and
→ keys). The preference rating task asked users to click on the slider.

Turk, $3 compensation). Palette size (3-, 5-, 8-colors) was a between-
subjects factor. For quality control, we determined a priori to discard
participants who were < 60% accurate across all trials in the discrim-
inability task (3-color: n = 3; 5-color: n = 6; 8-color: n = 8). No
participants were discarded in the preference task. In the final datasets
there were 20 participants per palette size in each task, and discard
frequency did not significantly differ between palette size conditions
(χ2(2) = 1.793, p = 0.408). All self-reported having normal color vi-
sion and gave informed consent. The Brown University IRB approved
the experiment protocol.

6.1.2 Design & Displays

The experimental designs for the discrimination and preference tasks
were similar. In both, each participant saw 660 palettes from 66 slider
settings (see Sec. 5 for setting information) with 10 different color
palettes within each slider setting (treated as repetitions). The specific
colors in each palette varied across participants (simulating different
runs of Colorgorical), but were generated with the same experimental
design. Palette size varied between-subjects (3, 5, or 8 colors).

The palettes that comprised the displays for the discrimination task
were also used for the preference task, such that each discrimination
participant was yoked to a preference participant (i.e., both saw the
same palettes). Palettes were displayed on a predefined map of 554
counties in the U.S. (300×300 pixels). The map itself differed slightly
based on the task (Fig. 4).

For the discrimination task, a 5-pixel-wide contour bisected the map
(adhering to county borders). The contour was black and the county
borders were white so that both would fall outside of Colorlogical’s de-
fault lightness sampling range (L ∈ [25,85]; LBlack = 0;LWhite = 100).
The size of the counties on each side were slightly altered so they were
approximately equal (left: 165 px; right: 163 px). A legend rendered
to the right of each map assigned each palette color to a nonsense word
category. The target “Neek” color was always at the top of the legend
to prevent participants from having to search for the target color. One
side of the map had over-represented target color (“Neek”; 1.5× more
frequent on one side than the base rate) and the opposite side had an
over-represented distractor color (1.3× more frequent). The target side
was left/right balanced across trials. Based on our assumption that a
palette is only as effective as its least discriminable pair of colors, the
target and distractor colors were always the palette colors with the
lowest and second-lowest Perceptual Distance scores compared with
all other colors in the palette, respectively.

In the preference task, there was no dividing contour and no legend,
the colors were roughly equal in proportion, and they were randomly
assigned to positions across the map (no left/right asymmetry). Below
the map there was a 300-pixel-wide continuous response slider scale
ranging from -100 to 100 with labeled extrema and midpoint (left: “not
at all”; right: “very much”; midpoint: “neutral”) [30]. The scale was
initialized with the slider set to “neutral” to avoid biasing participants.
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Fig. 5. Correlations between binned palette scores and responses on
each measure for each palette size ( : p < 0.05; : p < 0.01; : p < 0.001).

6.1.3 Procedure

Discrimination Task. Participants were first presented with an
example display and were told that their task would be to indicate
which half (left/right) of a map had more Neek counties using the
left/right arrow keys. They were also told that the target Neek color
would always be shown at the top of a legend and that answers would
be marked incorrect if they did not respond within 3.5 seconds. Par-
ticipants completed five practice trials using distinct displays from the
660 test maps they would see in the experiment, followed by 660 test
trials. Maps were shown in random order in the center of the window.
Trials were separated by a 500-ms inter-trial interval with a fixation
cross displayed at the center of the screen. Optional breaks were given
every 20 trials. This task took ∼30 minutes to complete.

Preference Task. Participants were asked to rate their aesthetic
preference for the color combination in each palette by clicking a point
on a slider between the left (“not at all” preferable) and the right (“very
much” preferable) ends (Fig. 4). To help them gauge what liking “not
at all” and “very much” meant to them in the context of these color
combinations, participants were shown an anchoring page containing
66 representative maps. They scrolled through the maps and consid-
ered how they would rate each map while using the full range of the
scale. During the experiment, each map was presented one at a time in
a random order (separated by a 250-ms blank pause screen). The pref-
erence slider appeared 1 second after the map appeared to encourage
participants to consider their preference carefully before responding.
This task took ∼40 minutes to complete.

6.2 Results and Discussion

Before analysis, we pruned response time (RT) data by removing in-
correct trials and then eliminating trials for each subject that were more
than ±2.5 standard deviations away from their mean RT [27]. On av-
erage, 129 errors (19.5%) and 24 outliers (3.6%) were removed.

Overall participant accuracy decreased as palette size increased (3-
color average error: 79/660; 5-color: 119/660; 8-color: 190/660),
indicating that displays with smaller color palettes were more dis-
criminable (P1, P3). This result mirrored the increased participant
discard rate for larger palette size conditions due to high error rates
(Sec. 6.1.1) and is consistent with previous findings that showed visu-
alizations with fewer color categories are more effective [5]. Between-
subjects one-way ANOVAs testing for effects of palette size (3, 5,
8) within each measure indicated significant effects for number of
errors (F(2,57) = 30.801, p < .001) but not for RT or preference
(F(2,57) = 1.574,1.035; p = 0.216,0.362, respectively).
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Fig. 6. Variance explained (R2) for the 9 models decomposed to look at
the variance explained of behavioral data in terms of slider settings (i.e.,
palette score relative importance).

6.2.1 Palette score and behavioral measure correlations

Figure 5 shows the correlations between each type of palette score
(Perceptual Distance, Name Difference, Name Uniqueness, and Pair
Preference) and the three behavioral measures (RT, error rate, and pref-
erence ratings), averaged over participants. Palette score refers to the
lowest palette scoring function value (Sec. 3) given all color pairs in
a palette. To conduct these analyses, we first binned the behavioral
data for each measure according to palette scores (15 equally-spaced
bins) for each subject2. After, we averaged the data for all palettes
that scored in the same bin and then averaged those values across par-
ticipants. This binning was necessary prior to averaging across par-
ticipants because each participant saw different palettes with slightly
different scores (Supp. Mat.). For example, RT for palettes with a Pair
Preference scores of 30.03 and 30.05 would be binned together.

We cross-checked the binned-score correlations by calculating the
within-subject correlations for each behavioral measure and palette
score and then used Fisher’s Z transform prior to calculating the
between-subject average Pearson’s r for each measure and score com-
bination. For the most part, these analyses showed the same pattern of
results as the binned correlation statistics (Supp. Mat.).

The binned-score correlations are presented below (see Supp. Mat.
for individual correlations on non-binned data). In summary, the Per-
ceptual Distance, Name Difference, and Pair Preference scores had
the predicted effects: RT and error rates decreased (i.e., better per-
formance) as Perceptual Distance and Name Difference increased, but
they increased (i.e., worse performance) as Pair Preference increased
(P2). In contrast, preference decreased as Perceptual Distance and
Name Difference increased and they increased as Pair Preference in-
creased. Name Uniqueness had little to no effect.

RT. RT decreased as Perceptual Distance and Name Difference
increased for 3- and 5-color palettes (Perceptual Distance: r(13) =
−0.926,r(13) = −0.757; p � 0.001 respectively; Name Difference:
r(13) = −0.893,r(13) = −0.689; p � 0.005 respectively). Similarly,
Pair Preference followed P2 for 3- and 5-color palettes with strong
positive correlations with RT (r(13) = 0.755,0.776; p= 0.001). Name
Uniqueness was significantly correlated with RT for 3-colors (r(13) =
0.521; p = 0.046), but not for 5-colors (r(13) = 0.306; p = 0.268).
No scores were significantly correlated with RT for 8-color condi-
tions (r(12) = 0.496,r(13) = 0.251,−0.071,−0.193; p � 0.071 for
Perceptual Distance, Name Difference, Name Uniqueness, and Pair
Preference respectively). These findings largely support P2 for 3 and
5 colors; however, 8-color palette correlations were not significant.

Error. Error rate correlations were significant for all sizes with
Perceptual Distance (r(13) = −0.887,−0.898,r(12) = −0.731; p �

0.003, for 3-, 5-, and 8-colors respectively), Name Difference (r(13) =
−0.874,−0.892,−0.838; p < 0.001), and Pair Preference (r(13) =
0.697,0.945,0.761; p � 0.004). Similar to RT correlations, Name

2The degrees of freedom for 8-color perceptual distance correlations is one

less due to an empty bin, which is shown in the Supplementary Material.

Uniqueness was not significantly related to error measures (r(13) =
−0.016,−0.141,−0.126; p � 0.616).

Preference Rating. Preference rating trends were the oppo-
site of error and RT, and consistent with P2. Increasing 3- and
8-color Perceptual Distance reduced preference ratings, (r(13) =
−0.897,r(12) = −0.751; p � 0.002) but not significantly so for
5-color palette (r(13) = 0.412; p = 0.127). Preference ratings
also decreased as Name Difference increased for 3-, 5-, and 8-
colors (r(13) = −0.969,−0.57,−0.891; p � 0.026, respectively).
Increasing Pair Preference increased preference ratings (r(13) =
0.971,0.57,0.796; p � 0.026). Again, Name Uniqueness was not sig-
nificantly related (r(13) = 0.346,−0.333,0.073; p � 0.207).

6.2.2 Predicting behavioral measures from slider settings

To test whether slider settings (i.e., relative importance of the palette
scoring functions) significantly predict behavior (P4), we performed a
series of multiple linear regressions that predicted behavioral measures
as a function of changing sliders to 0%, 50%, or 100% (Fig. 6). Given
that the correlational analyses above suggested that Name Uniqueness
had little effect on behavior, we averaged slider configurations that
would be equivalent if Name Uniqueness were ignored. For example,
if Perceptual Distance and Name Uniqueness were both set to 50%, the
new setting would be Perceptual Distance as 100% and would be aver-
aged with other palettes where Perceptual Distance is 100%. This re-
duced the regression analysis to predict 20 unique slider settings rather
than the previous 66. The data that were input to the correlations are
graphed in the Supplementary Material.

Below we detail the results of the multiple linear regressions us-
ing slider relative importance to predict the three behavioral measures.
More information about the relation between sliders, size, and behav-
ioral measures is provided in the Supplementary Material. In sum-
mary, the slider settings were typically able to significantly predict the
behavioral measures (P4).

RT. RT decreased (improved) as Perceptual Distance and Name
Difference slider weights increased and RT increased (got worse) as
Pair Preference slider weights increased (P4; Supp. Mat.). Name Dif-
ference was always the most predictive and Perceptual Difference and
Pair Preference were similarly less predictive (Fig. 6). Although this
pattern was present for all three palette sizes, the models were signif-
icant for the 3- and 5-color palettes (F(3,16) = 23.442,11.447;R2 =
0.815,0.682; p < 0.001, respectively), but not the 8-color palettes
(F(3,16) = 1.267,R2 = 0.192, p = 0.319). The lack of significance
for 8-color palettes coincides with the oddity that response time was
typically faster for 8-color palettes than 5-color ones; this is unex-
pected, given (1) past visual search research finding that more colors
take longer to discriminate [5] and (2) the previously discussed palette
size relation with accuracy. We suspect that this difference may be
because participants tried less hard or the task became too difficult in
the 8-color condition because they had higher overall error rates. An-
other possibility is that pair-based color discriminability scores (e.g.,
Perceptual Distance) may break down as the number of colors in-
creases, which would create a need for higher-order combination dis-
criminability scores. Each of these possibilities raise interesting future
directions for studying the relation between palette effectiveness and
number of colors.

Error. Slider relative importance analysis mirrored RT (P4; Supp.
Mat.), except that Pair Preference was more important than Percep-
tual Distance (Fig. 6 and Supp. Mat.). The reason for this differ-
ence is unknown. The multiple linear regressions for all 3-, 5-, and
8-colors were all significant (F(3,16) = 13.186,11.964,6.192;R2 =
0.712,0.692,0.537; p � 0.005, respectively).

Preference Rating. Preference ratings increased with weights on
the Pair Preference slider and decreased with weights on the Percep-
tual Distance and Name Difference sliders (P4; Supp. Mat. slider-
behavior figure). Pair Preference was the most predictive slider for
3-colors, but not for 5- and 8-colors (Fig. 6 and Supp. Mat.); instead,
Name Difference was most predictive. Perceptual Distance was more
important than Pair Preference for 5-colors, but was otherwise the

least important slider. The multiple linear regressions for 3-, 5-, and
8-colors were all significant (F(3,16) = 35.089,7.396,5.228;R2 =
0.868,0.581,0.495; p � 0.01, respectively).

It is noteworthy that the model’s ability to predict preference rat-
ings decreased for 5-colors relative to 3-colors, suggesting that the
mechanism behind human aesthetic preference ratings may deviate
from pair-based preference predictions as the number of palette colors
changes. Another difference for 5-color palettes, compared to 3- and
8-colors, was that all settings were rated either neutral or slightly neg-
ative. These results suggest that the assumption that pair-wise based
preference models generalize to palettes of three colors might break
down for larger palettes. The differences in preference ratings over
palette sizes motivates the need for further research on the aesthetics
of higher-order color combinations.

We also found that preference ratings decreased faster as Name Dif-
ference relative importance was increased compared to increases in
Perceptual Distance relative importance (see Supp. Mat.). This asym-
metry might be caused by differences in how Perceptual Distance and
Name Difference measure distances in color space. It could be that
Perceptual Distance is more supportive because it can generate color
pairs that differ primarily in lightness (which is one of the terms in Pair
Preference), whereas Name Difference might be more likely to favor
differences in hue, which would be in opposition to Pair Preference’s
hue similarity term.

6.2.3 Lowest-Error and Highest-Preference settings

A main goal of Experiment 1 was to determine which Colorgorical
settings to use to generate color palettes for comparison against cur-
rent standards (Experiment 2). The combinatorial explosion of con-
ditions prevented comparing all slider combinations to current stan-
dards. Therefore, we chose to select slider settings that either pro-
duced highly discriminable or highly preferable palettes (i.e., at either
end of the previously-discussed discriminability-preference trade-off).
Figure 8 shows the lowest discrimination error setting (subsequently
called “Low-Error” palettes) and the highest preference rating set-
ting (“Preferable” palettes) for each palette size. There were signif-
icantly fewer errors for Low-Error palettes than for Preferable palettes
(t(19) = 3.322,7.589,3.15; p � 0.005, 3-,5-,8-colors). Preference rat-
ings were significantly greater for Preferable palettes than for Low-
Error palettes for 3- and 8-colors (t(19) = 4.610,2.841, p � 0.01), but
not for 5-colors (t(19) = 0.499, p = 0.623) (consistent issues about
5-color palettes discussed above).

6.2.4 Summary

Experiment 1’s results largely support each of our four predictions
and suggest that Colorgorical’s sliders are effective at controlling the
discriminability and preference of color palettes, although some 5-
and 8-color conditions led to unexpected behavioral results. Discrim-
inability performance typically improved (faster RT, fewer errors) as
the Perceptual Distance and Name Difference palette scores increased
(and with greater weight on their corresponding sliders) and Prefer-
ence judgments typically increased as Pair Preference palette scores
increased (with greater weight on its slider) (P2). There was also ev-
idence for a tradeoff – discriminability decreased as both Pair Pref-
erence scores and scoring function weights increased, and preference
judgments decreased as Perceptual Difference and Name Difference
increased. This finding supports our earlier claim that care must be
taken to design palettes that balance both discriminability and aesthetic
preference. We also found that Name Difference, not Perceptual Dis-
tance, might better predict discriminability. This would also support
Demiralp et al.’s previous findings that suggested Name Difference is
a better measure of color distance than Perceptual Difference [3].

Additionally, our results suggest that smaller palettes are more dis-
criminable (P1), that palette size modulates discriminability and pref-
erence ratings (P3), and that slider configurations significantly predict
behavior (P4). We provide additional analysis and discussion for each
prediction in the Supplementary Material.

Last, differences in discriminability and aesthetic preference trends
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Fig. 5. Correlations between binned palette scores and responses on
each measure for each palette size ( : p < 0.05; : p < 0.01; : p < 0.001).

6.1.3 Procedure

Discrimination Task. Participants were first presented with an
example display and were told that their task would be to indicate
which half (left/right) of a map had more Neek counties using the
left/right arrow keys. They were also told that the target Neek color
would always be shown at the top of a legend and that answers would
be marked incorrect if they did not respond within 3.5 seconds. Par-
ticipants completed five practice trials using distinct displays from the
660 test maps they would see in the experiment, followed by 660 test
trials. Maps were shown in random order in the center of the window.
Trials were separated by a 500-ms inter-trial interval with a fixation
cross displayed at the center of the screen. Optional breaks were given
every 20 trials. This task took ∼30 minutes to complete.

Preference Task. Participants were asked to rate their aesthetic
preference for the color combination in each palette by clicking a point
on a slider between the left (“not at all” preferable) and the right (“very
much” preferable) ends (Fig. 4). To help them gauge what liking “not
at all” and “very much” meant to them in the context of these color
combinations, participants were shown an anchoring page containing
66 representative maps. They scrolled through the maps and consid-
ered how they would rate each map while using the full range of the
scale. During the experiment, each map was presented one at a time in
a random order (separated by a 250-ms blank pause screen). The pref-
erence slider appeared 1 second after the map appeared to encourage
participants to consider their preference carefully before responding.
This task took ∼40 minutes to complete.

6.2 Results and Discussion

Before analysis, we pruned response time (RT) data by removing in-
correct trials and then eliminating trials for each subject that were more
than ±2.5 standard deviations away from their mean RT [27]. On av-
erage, 129 errors (19.5%) and 24 outliers (3.6%) were removed.

Overall participant accuracy decreased as palette size increased (3-
color average error: 79/660; 5-color: 119/660; 8-color: 190/660),
indicating that displays with smaller color palettes were more dis-
criminable (P1, P3). This result mirrored the increased participant
discard rate for larger palette size conditions due to high error rates
(Sec. 6.1.1) and is consistent with previous findings that showed visu-
alizations with fewer color categories are more effective [5]. Between-
subjects one-way ANOVAs testing for effects of palette size (3, 5,
8) within each measure indicated significant effects for number of
errors (F(2,57) = 30.801, p < .001) but not for RT or preference
(F(2,57) = 1.574,1.035; p = 0.216,0.362, respectively).
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Fig. 6. Variance explained (R2) for the 9 models decomposed to look at
the variance explained of behavioral data in terms of slider settings (i.e.,
palette score relative importance).

6.2.1 Palette score and behavioral measure correlations

Figure 5 shows the correlations between each type of palette score
(Perceptual Distance, Name Difference, Name Uniqueness, and Pair
Preference) and the three behavioral measures (RT, error rate, and pref-
erence ratings), averaged over participants. Palette score refers to the
lowest palette scoring function value (Sec. 3) given all color pairs in
a palette. To conduct these analyses, we first binned the behavioral
data for each measure according to palette scores (15 equally-spaced
bins) for each subject2. After, we averaged the data for all palettes
that scored in the same bin and then averaged those values across par-
ticipants. This binning was necessary prior to averaging across par-
ticipants because each participant saw different palettes with slightly
different scores (Supp. Mat.). For example, RT for palettes with a Pair
Preference scores of 30.03 and 30.05 would be binned together.

We cross-checked the binned-score correlations by calculating the
within-subject correlations for each behavioral measure and palette
score and then used Fisher’s Z transform prior to calculating the
between-subject average Pearson’s r for each measure and score com-
bination. For the most part, these analyses showed the same pattern of
results as the binned correlation statistics (Supp. Mat.).

The binned-score correlations are presented below (see Supp. Mat.
for individual correlations on non-binned data). In summary, the Per-
ceptual Distance, Name Difference, and Pair Preference scores had
the predicted effects: RT and error rates decreased (i.e., better per-
formance) as Perceptual Distance and Name Difference increased, but
they increased (i.e., worse performance) as Pair Preference increased
(P2). In contrast, preference decreased as Perceptual Distance and
Name Difference increased and they increased as Pair Preference in-
creased. Name Uniqueness had little to no effect.

RT. RT decreased as Perceptual Distance and Name Difference
increased for 3- and 5-color palettes (Perceptual Distance: r(13) =
−0.926,r(13) = −0.757; p � 0.001 respectively; Name Difference:
r(13) = −0.893,r(13) = −0.689; p � 0.005 respectively). Similarly,
Pair Preference followed P2 for 3- and 5-color palettes with strong
positive correlations with RT (r(13) = 0.755,0.776; p= 0.001). Name
Uniqueness was significantly correlated with RT for 3-colors (r(13) =
0.521; p = 0.046), but not for 5-colors (r(13) = 0.306; p = 0.268).
No scores were significantly correlated with RT for 8-color condi-
tions (r(12) = 0.496,r(13) = 0.251,−0.071,−0.193; p � 0.071 for
Perceptual Distance, Name Difference, Name Uniqueness, and Pair
Preference respectively). These findings largely support P2 for 3 and
5 colors; however, 8-color palette correlations were not significant.

Error. Error rate correlations were significant for all sizes with
Perceptual Distance (r(13) = −0.887,−0.898,r(12) = −0.731; p �

0.003, for 3-, 5-, and 8-colors respectively), Name Difference (r(13) =
−0.874,−0.892,−0.838; p < 0.001), and Pair Preference (r(13) =
0.697,0.945,0.761; p � 0.004). Similar to RT correlations, Name

2The degrees of freedom for 8-color perceptual distance correlations is one

less due to an empty bin, which is shown in the Supplementary Material.

Uniqueness was not significantly related to error measures (r(13) =
−0.016,−0.141,−0.126; p � 0.616).

Preference Rating. Preference rating trends were the oppo-
site of error and RT, and consistent with P2. Increasing 3- and
8-color Perceptual Distance reduced preference ratings, (r(13) =
−0.897,r(12) = −0.751; p � 0.002) but not significantly so for
5-color palette (r(13) = 0.412; p = 0.127). Preference ratings
also decreased as Name Difference increased for 3-, 5-, and 8-
colors (r(13) = −0.969,−0.57,−0.891; p � 0.026, respectively).
Increasing Pair Preference increased preference ratings (r(13) =
0.971,0.57,0.796; p � 0.026). Again, Name Uniqueness was not sig-
nificantly related (r(13) = 0.346,−0.333,0.073; p � 0.207).

6.2.2 Predicting behavioral measures from slider settings

To test whether slider settings (i.e., relative importance of the palette
scoring functions) significantly predict behavior (P4), we performed a
series of multiple linear regressions that predicted behavioral measures
as a function of changing sliders to 0%, 50%, or 100% (Fig. 6). Given
that the correlational analyses above suggested that Name Uniqueness
had little effect on behavior, we averaged slider configurations that
would be equivalent if Name Uniqueness were ignored. For example,
if Perceptual Distance and Name Uniqueness were both set to 50%, the
new setting would be Perceptual Distance as 100% and would be aver-
aged with other palettes where Perceptual Distance is 100%. This re-
duced the regression analysis to predict 20 unique slider settings rather
than the previous 66. The data that were input to the correlations are
graphed in the Supplementary Material.

Below we detail the results of the multiple linear regressions us-
ing slider relative importance to predict the three behavioral measures.
More information about the relation between sliders, size, and behav-
ioral measures is provided in the Supplementary Material. In sum-
mary, the slider settings were typically able to significantly predict the
behavioral measures (P4).

RT. RT decreased (improved) as Perceptual Distance and Name
Difference slider weights increased and RT increased (got worse) as
Pair Preference slider weights increased (P4; Supp. Mat.). Name Dif-
ference was always the most predictive and Perceptual Difference and
Pair Preference were similarly less predictive (Fig. 6). Although this
pattern was present for all three palette sizes, the models were signif-
icant for the 3- and 5-color palettes (F(3,16) = 23.442,11.447;R2 =
0.815,0.682; p < 0.001, respectively), but not the 8-color palettes
(F(3,16) = 1.267,R2 = 0.192, p = 0.319). The lack of significance
for 8-color palettes coincides with the oddity that response time was
typically faster for 8-color palettes than 5-color ones; this is unex-
pected, given (1) past visual search research finding that more colors
take longer to discriminate [5] and (2) the previously discussed palette
size relation with accuracy. We suspect that this difference may be
because participants tried less hard or the task became too difficult in
the 8-color condition because they had higher overall error rates. An-
other possibility is that pair-based color discriminability scores (e.g.,
Perceptual Distance) may break down as the number of colors in-
creases, which would create a need for higher-order combination dis-
criminability scores. Each of these possibilities raise interesting future
directions for studying the relation between palette effectiveness and
number of colors.

Error. Slider relative importance analysis mirrored RT (P4; Supp.
Mat.), except that Pair Preference was more important than Percep-
tual Distance (Fig. 6 and Supp. Mat.). The reason for this differ-
ence is unknown. The multiple linear regressions for all 3-, 5-, and
8-colors were all significant (F(3,16) = 13.186,11.964,6.192;R2 =
0.712,0.692,0.537; p � 0.005, respectively).

Preference Rating. Preference ratings increased with weights on
the Pair Preference slider and decreased with weights on the Percep-
tual Distance and Name Difference sliders (P4; Supp. Mat. slider-
behavior figure). Pair Preference was the most predictive slider for
3-colors, but not for 5- and 8-colors (Fig. 6 and Supp. Mat.); instead,
Name Difference was most predictive. Perceptual Distance was more
important than Pair Preference for 5-colors, but was otherwise the

least important slider. The multiple linear regressions for 3-, 5-, and
8-colors were all significant (F(3,16) = 35.089,7.396,5.228;R2 =
0.868,0.581,0.495; p � 0.01, respectively).

It is noteworthy that the model’s ability to predict preference rat-
ings decreased for 5-colors relative to 3-colors, suggesting that the
mechanism behind human aesthetic preference ratings may deviate
from pair-based preference predictions as the number of palette colors
changes. Another difference for 5-color palettes, compared to 3- and
8-colors, was that all settings were rated either neutral or slightly neg-
ative. These results suggest that the assumption that pair-wise based
preference models generalize to palettes of three colors might break
down for larger palettes. The differences in preference ratings over
palette sizes motivates the need for further research on the aesthetics
of higher-order color combinations.

We also found that preference ratings decreased faster as Name Dif-
ference relative importance was increased compared to increases in
Perceptual Distance relative importance (see Supp. Mat.). This asym-
metry might be caused by differences in how Perceptual Distance and
Name Difference measure distances in color space. It could be that
Perceptual Distance is more supportive because it can generate color
pairs that differ primarily in lightness (which is one of the terms in Pair
Preference), whereas Name Difference might be more likely to favor
differences in hue, which would be in opposition to Pair Preference’s
hue similarity term.

6.2.3 Lowest-Error and Highest-Preference settings

A main goal of Experiment 1 was to determine which Colorgorical
settings to use to generate color palettes for comparison against cur-
rent standards (Experiment 2). The combinatorial explosion of con-
ditions prevented comparing all slider combinations to current stan-
dards. Therefore, we chose to select slider settings that either pro-
duced highly discriminable or highly preferable palettes (i.e., at either
end of the previously-discussed discriminability-preference trade-off).
Figure 8 shows the lowest discrimination error setting (subsequently
called “Low-Error” palettes) and the highest preference rating set-
ting (“Preferable” palettes) for each palette size. There were signif-
icantly fewer errors for Low-Error palettes than for Preferable palettes
(t(19) = 3.322,7.589,3.15; p � 0.005, 3-,5-,8-colors). Preference rat-
ings were significantly greater for Preferable palettes than for Low-
Error palettes for 3- and 8-colors (t(19) = 4.610,2.841, p � 0.01), but
not for 5-colors (t(19) = 0.499, p = 0.623) (consistent issues about
5-color palettes discussed above).

6.2.4 Summary

Experiment 1’s results largely support each of our four predictions
and suggest that Colorgorical’s sliders are effective at controlling the
discriminability and preference of color palettes, although some 5-
and 8-color conditions led to unexpected behavioral results. Discrim-
inability performance typically improved (faster RT, fewer errors) as
the Perceptual Distance and Name Difference palette scores increased
(and with greater weight on their corresponding sliders) and Prefer-
ence judgments typically increased as Pair Preference palette scores
increased (with greater weight on its slider) (P2). There was also ev-
idence for a tradeoff – discriminability decreased as both Pair Pref-
erence scores and scoring function weights increased, and preference
judgments decreased as Perceptual Difference and Name Difference
increased. This finding supports our earlier claim that care must be
taken to design palettes that balance both discriminability and aesthetic
preference. We also found that Name Difference, not Perceptual Dis-
tance, might better predict discriminability. This would also support
Demiralp et al.’s previous findings that suggested Name Difference is
a better measure of color distance than Perceptual Difference [3].

Additionally, our results suggest that smaller palettes are more dis-
criminable (P1), that palette size modulates discriminability and pref-
erence ratings (P3), and that slider configurations significantly predict
behavior (P4). We provide additional analysis and discussion for each
prediction in the Supplementary Material.

Last, differences in discriminability and aesthetic preference trends
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Fig. 7. Exp. 3 palettes: ColorBrewer (Dark2, Pastel1, Set1, Set2); Mi-
crosoft (all); Tableau (10, Blue-Red, Green-Orange, Purple-Gray); Col-
orgorical and Random palettes varied across participants.

across palette sizes motivate additional research beyond pairwise the-
oretical models of color discrimination and preference rating.

7 EXP. 2: COLORGORICAL-OTHERS BENCHMARK

Experiment 2 compares palettes generated by Colorgorical Low-Error
and Preferable slider settings to commonly used “benchmark” palettes
(ColorBrewer, Microsoft Excel, and Tableau; Fig. 7). We also in-
cluded randomly sampled palettes with noticeably different colors to
simulate palettes made by someone without design expertise who tried
to choose colors that were not confusable. We predicted that:

P Colorgorical Low-Error and Preferable settings would produce
palettes that are at least as discriminable and typically more
preferable compared to the majority of benchmarks

We based this prediction on expected outcomes of Colorgorical and
benchmark palettes by applying regressions modeled on Experiment 1
palette scores and behavioral responses to the palette scores of Exper-
iment 2 palette sets. As shown in Figure 8, Colorgorical palettes were
expected to create more preferable palettes, with the exception of Mi-
crosoft 5- and 8-color palettes, which were predicted to outperform
both Colorgorical settings. We also expected that Colorgorical would
produce palettes with error rates similar to Tableau across all three
sizes. We specified planned comparisons to test these predictions with
the human-subject data from Experiment 1.

7.1 Methods

7.1.1 Participants

75 participants (recruited through Amazon Mechanical Turk; paid $1)
completed the discrimination task and 60 completed the preference
task. All gave informed consent, and the Brown University IRB ap-
proved the experiment protocol. All self-reported having normal color
vision. 15 discrimination participants were less than 60% accurate and
were discarded, per Experiment 1 procedure (3-colors: n= 0, 5-colors:
n = 7, 8-colors: n = 8). Participants were divided equally across size
conditions (n = 20 per size), and there was a significant effect between
discard rate and size (χ2(2) = 6.878, p = 0.032).

7.1.2 Design, Displays, & Procedure

Palette size (3,5,8) varied between subjects and the rest of the factors
varied within-subject. Participants in the discriminability task com-
pleted 96 trials (6 palette sets {Colorgorical Low-Error and Preferable,
ColorBrewer, Microsoft, Tableau, Random} × 4 palettes taken from
each set × 4 repetitions). Participants in the preference rating task
were presented with 24 trials (6 palette sets × 4 palettes, no repeti-
tion).
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Fig. 8. Palette-behavior predictions and actual results for Experiment 2
(e.g., 4 errors = 25% error rate). Prediction models were trained on Ex-
periment 1 palette scores and behavioral responses. Error bars show
SEM. The table shows the Exp.2 Colorgorical slider settings (PD: Per-
ceptual Distance; ND: Name Difference; PP: Pair Preference).

The benchmark palette sets included four palettes from each palette
group’s larger collection (Fig. 7). Microsoft palettes included all four
available palettes in Microsoft Excel for Mac (v.15.8). ColorBrewer
palettes included four of the eight available palettes, including those
with the greatest minimum Perceptual Distance and excluding palettes
with niche purposes (e.g., “Paired”) [6]. Tableau palettes included the
default Tableau 10 and the three palettes that were not designed for
niche applications. We created random palettes by randomly sampling
discriminable colors in RGB space for each participant (Sec. 4.3.1).
All participants saw the same benchmark palettes aside from random.
Each participant was given different random and Colorgorical palettes
to test each palette type’s full potential variance. The Low-Error and
Preferable palettes were made with settings described at the end of
Section 6 (Fig. 8). Otherwise, the design, stimuli, and procedure were
the same as Experiment 1. The discrimination task took ∼5 minutes to
complete and the preference rating task took ∼10 minutes to complete.

7.2 Results and Discussion

We focused only on error and preference rating data (not RT) because
error and RT results in Experiment 1 were similar and because we
chose the Colorgorical palettes based on error rates and preference
ratings. All reported t-tests were paired sample and two-tailed.

We first conducted two 6 palette set (within-subject) × 3 palette size
(between-subject) mixed-design ANOVAs: one for error rates (aver-
aged over replications) and a second for preference ratings. For error,
there were main effects of palette set (F(5,285) = 3.538, p = 0.004),
palette size (F(2,57) = 59.34, p < 0.001), and a 2-way interaction be-
tween them (F(10,285) = 5.896, p = 0.01). For preference ratings,
there was a main effect of palette set (F(5,285) = 13.235, p < 0.001)
with no effect of palette size (F(2,57) = 0.258, p = 0.773) and no
interaction (F(10,285) = 1.283, p = 0.239). As shown in Figure 8,
error increased with size, but preference ratings were more stable as
size increased. Palette set differences are shown through the vertical
separation of behavioral responses across palette sets. Our planned
comparisons below delve into these effects, and they largely support
the trends in our predictive models based on palette score with (al-
though size does not show the predicted effect for preference ratings).

7.2.1 Colorgorical Low-Error vs. Preferable Palettes

We first tested whether the error and preference differences between
Colorgorical-Low-Error and -Preferable palettes replicated the re-
sults of Experiment 1. As in Experiment 1, the Preferable palettes
were preferred to the Low-Error palettes for 3- and 8-color palettes
(t(19) = 3.573,−3.79; p = 0.002,0.001;), but not for 5-color palettes
(t(19) =−0.405, p = 0.690). There were fewer errors for the 3-color
Low-Error palettes than for the Preferable palettes (t(19) = 3.286, p =
0.004), but there was no difference for the 5-color palettes (t(19) =
0.195, p = 0.847). The only test that was inconsistent with our previ-
ous findings was that error rates for 8-colors were lower for Preferable
palettes than for Low-Error palettes (t(19) = 2.113, p = 0.048). The
reason for this result is unknown.

7.2.2 Comparing Colorgorical to industry standard palettes

We next tested our prediction that Colorgorical palettes would be
as discriminable and typically more preferable than the benchmark
palettes. The tests were planned a priori based on predictions from
Colorgorical and benchmark palette scores described below (Fig. 8).
We conducted 48 paired two-sample t-tests comparing participants’
discrimination error and preference ratings within the Colorgorical
palettes and between the Colorgorical palettes and the four benchmark
palette sets within each palette size (Fig. 8).

Error rate. Based on the model predictions (Fig. 8), we expected
that error would not significantly differ between Colorgorical Low-
Error palettes and all benchmarks except for Microsoft, where we pre-
dicted that Low Error palettes would elicit fewer errors. For 5- and 8-
colors we predicted that Low-Error errors would be similar to Tableau,
worse than ColorBrewer and Random, and better than Microsoft. We
made the same predictions for Preferable palettes, except that 3-color
error might only be as good as Microsoft, and 5- and 8-color error
might be worse than Tableau.

Performance for Low-Error palettes was slightly better than ex-
pected. There were significantly fewer errors for 5-color Low Error
than for 5-color Microsoft (t(19) = 2.396, p = 0.027) and no signifi-
cant difference from the other benchmarks (t(19)< 1.628, p � 0.12).

Colorgorical-Preferable error also matched our predictions because
there was always at least one benchmark that had non-significantly
different error rates compared to the setting (t(19) � 1.898, p �

0.073). Unexpectedly, Colorgorial-Preferable palettes led to signif-
icantly lower error than 8-color ColorBrewer and Microsoft palettes
(t(19) � 2.910, p � 0.009). However, consistent with our predic-
tions, 3-color Colorgorial-Preferable led to significantly more er-
rors than ColorBrewer, Tableau, and Random benchmarks (t(19) =
2.531,3.644,3.047; p = 0.020,0.002,0.007, respectively).

The fewer errors for random than for Colorgorical preferable may
be surprising, but it is consistent with our earlier observations. There is
a high likelihood that three randomly sampled colors will be far apart
in our quantized CIELAB space, leading to very high discriminability
but also low preference. As the number of randomly sampled colors
increases, discriminability decreases, as shown in the non-significant
comparisons to 5- and 8-color Colorgorical Preferable. Although the
Colorgorial-Preferable settings produced less discriminable results in
some conditions (e.g., 3-color error), there was always at least one
benchmark that lacked significantly different error rates.

Preference ratings. We predicted that both Low-Error and
Preferable palettes would be more preferable in all comparisons ex-
cept to 5- and 8-color Microsoft palettes (Fig. 8).

Low-Error was significantly more preferred than 5-color Color-
Brewer and 8-color Random (t(19) = 2.784,2.279, p = 0.012,0.034,
respectively) and was never significantly less preferred than the
other benchmarks (t(19) � 1.781, p � 0.091). Colorgorial-Preferable
palettes often led to significantly more preferable palettes (8 of 12, all
but 5- and 8-color Microsoft, 5-color Random, and 8-color Tableau;
t(19)� 2.105, p < 0.05).

Summary. Colorgorical Low-Error and Preferable palettes are
almost always as discriminable and often more preferable than the
current standard visualization-specific categorical color palettes (P).

Low-Error palettes were sometimes more discriminable and more
preferable or otherwise not significantly different than the benchmark
palettes. Similarly, Preferable palettes often led to significantly higher
preference ratings, and discriminability was not significantly different
compared to at least one industry standard for all sizes. Thus, Color-
gorical allows users without design expertise to create discriminable
and preferable palettes that often do not have significantly different
discriminability and that sometimes are more preferable than current
pre-made standards.

8 OPEN RESEARCH AREAS

We found that Colorgorical palettes, based on models of aesthetics
and discriminability, can be as effective as expert-made visualization
palettes and even more aesthetically preferable. These findings lead
to several future research directions. First, given that color combina-
tion discriminability and preference can be inversely related, how can
discriminability and preference be automatically optimized? Second,
what alternatives to the current pairwise theoretical models might bet-
ter predict discriminability and aesthetic preference for higher-order
combinations (e.g., 5- or 8-colors)? Third, how would color preference
models that diverge from figure/ground preference alter palette con-
struction? For instance, how might Lin et al.’s preferable palette gener-
ation technique that learns from artist-generated training palettes [12]
compare to palettes made with Pair Preference? Fourth, would the
same results hold if hue filters are applied when constructing Color-
gorical palettes? Fifth, how might Colorgorical help designers foresee
palettes that might be indiscriminable given color deficiencies [28]?

9 CONCLUSION

We presented Colorgorical, a model-driven approach to generating cat-
egorical color palettes for information visualizations by configuring
palette discriminability and preference. Colorgorical uses an iterative,
semi-random-sampling procedure to generate palettes of a specified
size. User-defined configurations work by changing the relative im-
portance of Perceptual Distance, Name Difference, and Pair Prefer-
ence scoring functions. Users can further customize palette creation
by modifying the number of colors, by defining which hues to sample
from, and by providing an existing palette to build upon.

The novelty of our approach stems from our departure from previ-
ous palette creation strategies. Whereas previous palette creation tools
focused primarily on discriminability or favored color relations in har-
monic templates whose empirical validity is questionable (e.g., Adobe
Color [21]), Colorgorical generates palettes with user-defined relative
importances for discriminability and aesthetic preference (Sec. 3). Our
color sampling approach also differs in strategy from pre-made palette
sets such as ColorBrewer, in which categorical palettes are generated
by first choosing colors representing different names and then varying
each palette color’s value [1].

Empirical tests show that each of Colorgorical’s sliders, which are
used to balance palette discrimination and preference, measure dif-
ferent aspects of color (Sec. 5) and modulate behavior as they were
designed to do (e.g., weighting discriminability sliders increases dis-
criminability performance) (Sec. 6).

Empirical tests that compare Colorgorical palettes and industry
standards revealed that our model-derived palettes are as effective
as, and sometimes better than, current categorical color palette stan-
dards. Our findings also indicate that the number of colors may
alter the effectiveness of pair-based discriminability and preference
scores. Colorgorical also improves upon industry standards by giv-
ing users the flexibility to create their own discriminable and prefer-
able palettes while enforcing visualization design constraints. These
results indicate that Colorgorical provides an effective way to create
categorical visualization color palettes. Colorgorical is open-sourced
at http://vrl.cs.brown.edu/color.
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Fig. 7. Exp. 3 palettes: ColorBrewer (Dark2, Pastel1, Set1, Set2); Mi-
crosoft (all); Tableau (10, Blue-Red, Green-Orange, Purple-Gray); Col-
orgorical and Random palettes varied across participants.

across palette sizes motivate additional research beyond pairwise the-
oretical models of color discrimination and preference rating.

7 EXP. 2: COLORGORICAL-OTHERS BENCHMARK

Experiment 2 compares palettes generated by Colorgorical Low-Error
and Preferable slider settings to commonly used “benchmark” palettes
(ColorBrewer, Microsoft Excel, and Tableau; Fig. 7). We also in-
cluded randomly sampled palettes with noticeably different colors to
simulate palettes made by someone without design expertise who tried
to choose colors that were not confusable. We predicted that:

P Colorgorical Low-Error and Preferable settings would produce
palettes that are at least as discriminable and typically more
preferable compared to the majority of benchmarks

We based this prediction on expected outcomes of Colorgorical and
benchmark palettes by applying regressions modeled on Experiment 1
palette scores and behavioral responses to the palette scores of Exper-
iment 2 palette sets. As shown in Figure 8, Colorgorical palettes were
expected to create more preferable palettes, with the exception of Mi-
crosoft 5- and 8-color palettes, which were predicted to outperform
both Colorgorical settings. We also expected that Colorgorical would
produce palettes with error rates similar to Tableau across all three
sizes. We specified planned comparisons to test these predictions with
the human-subject data from Experiment 1.

7.1 Methods

7.1.1 Participants

75 participants (recruited through Amazon Mechanical Turk; paid $1)
completed the discrimination task and 60 completed the preference
task. All gave informed consent, and the Brown University IRB ap-
proved the experiment protocol. All self-reported having normal color
vision. 15 discrimination participants were less than 60% accurate and
were discarded, per Experiment 1 procedure (3-colors: n= 0, 5-colors:
n = 7, 8-colors: n = 8). Participants were divided equally across size
conditions (n = 20 per size), and there was a significant effect between
discard rate and size (χ2(2) = 6.878, p = 0.032).

7.1.2 Design, Displays, & Procedure

Palette size (3,5,8) varied between subjects and the rest of the factors
varied within-subject. Participants in the discriminability task com-
pleted 96 trials (6 palette sets {Colorgorical Low-Error and Preferable,
ColorBrewer, Microsoft, Tableau, Random} × 4 palettes taken from
each set × 4 repetitions). Participants in the preference rating task
were presented with 24 trials (6 palette sets × 4 palettes, no repeti-
tion).
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Fig. 8. Palette-behavior predictions and actual results for Experiment 2
(e.g., 4 errors = 25% error rate). Prediction models were trained on Ex-
periment 1 palette scores and behavioral responses. Error bars show
SEM. The table shows the Exp.2 Colorgorical slider settings (PD: Per-
ceptual Distance; ND: Name Difference; PP: Pair Preference).

The benchmark palette sets included four palettes from each palette
group’s larger collection (Fig. 7). Microsoft palettes included all four
available palettes in Microsoft Excel for Mac (v.15.8). ColorBrewer
palettes included four of the eight available palettes, including those
with the greatest minimum Perceptual Distance and excluding palettes
with niche purposes (e.g., “Paired”) [6]. Tableau palettes included the
default Tableau 10 and the three palettes that were not designed for
niche applications. We created random palettes by randomly sampling
discriminable colors in RGB space for each participant (Sec. 4.3.1).
All participants saw the same benchmark palettes aside from random.
Each participant was given different random and Colorgorical palettes
to test each palette type’s full potential variance. The Low-Error and
Preferable palettes were made with settings described at the end of
Section 6 (Fig. 8). Otherwise, the design, stimuli, and procedure were
the same as Experiment 1. The discrimination task took ∼5 minutes to
complete and the preference rating task took ∼10 minutes to complete.

7.2 Results and Discussion

We focused only on error and preference rating data (not RT) because
error and RT results in Experiment 1 were similar and because we
chose the Colorgorical palettes based on error rates and preference
ratings. All reported t-tests were paired sample and two-tailed.

We first conducted two 6 palette set (within-subject) × 3 palette size
(between-subject) mixed-design ANOVAs: one for error rates (aver-
aged over replications) and a second for preference ratings. For error,
there were main effects of palette set (F(5,285) = 3.538, p = 0.004),
palette size (F(2,57) = 59.34, p < 0.001), and a 2-way interaction be-
tween them (F(10,285) = 5.896, p = 0.01). For preference ratings,
there was a main effect of palette set (F(5,285) = 13.235, p < 0.001)
with no effect of palette size (F(2,57) = 0.258, p = 0.773) and no
interaction (F(10,285) = 1.283, p = 0.239). As shown in Figure 8,
error increased with size, but preference ratings were more stable as
size increased. Palette set differences are shown through the vertical
separation of behavioral responses across palette sets. Our planned
comparisons below delve into these effects, and they largely support
the trends in our predictive models based on palette score with (al-
though size does not show the predicted effect for preference ratings).

7.2.1 Colorgorical Low-Error vs. Preferable Palettes

We first tested whether the error and preference differences between
Colorgorical-Low-Error and -Preferable palettes replicated the re-
sults of Experiment 1. As in Experiment 1, the Preferable palettes
were preferred to the Low-Error palettes for 3- and 8-color palettes
(t(19) = 3.573,−3.79; p = 0.002,0.001;), but not for 5-color palettes
(t(19) =−0.405, p = 0.690). There were fewer errors for the 3-color
Low-Error palettes than for the Preferable palettes (t(19) = 3.286, p =
0.004), but there was no difference for the 5-color palettes (t(19) =
0.195, p = 0.847). The only test that was inconsistent with our previ-
ous findings was that error rates for 8-colors were lower for Preferable
palettes than for Low-Error palettes (t(19) = 2.113, p = 0.048). The
reason for this result is unknown.

7.2.2 Comparing Colorgorical to industry standard palettes

We next tested our prediction that Colorgorical palettes would be
as discriminable and typically more preferable than the benchmark
palettes. The tests were planned a priori based on predictions from
Colorgorical and benchmark palette scores described below (Fig. 8).
We conducted 48 paired two-sample t-tests comparing participants’
discrimination error and preference ratings within the Colorgorical
palettes and between the Colorgorical palettes and the four benchmark
palette sets within each palette size (Fig. 8).

Error rate. Based on the model predictions (Fig. 8), we expected
that error would not significantly differ between Colorgorical Low-
Error palettes and all benchmarks except for Microsoft, where we pre-
dicted that Low Error palettes would elicit fewer errors. For 5- and 8-
colors we predicted that Low-Error errors would be similar to Tableau,
worse than ColorBrewer and Random, and better than Microsoft. We
made the same predictions for Preferable palettes, except that 3-color
error might only be as good as Microsoft, and 5- and 8-color error
might be worse than Tableau.

Performance for Low-Error palettes was slightly better than ex-
pected. There were significantly fewer errors for 5-color Low Error
than for 5-color Microsoft (t(19) = 2.396, p = 0.027) and no signifi-
cant difference from the other benchmarks (t(19)< 1.628, p � 0.12).

Colorgorical-Preferable error also matched our predictions because
there was always at least one benchmark that had non-significantly
different error rates compared to the setting (t(19) � 1.898, p �

0.073). Unexpectedly, Colorgorial-Preferable palettes led to signif-
icantly lower error than 8-color ColorBrewer and Microsoft palettes
(t(19) � 2.910, p � 0.009). However, consistent with our predic-
tions, 3-color Colorgorial-Preferable led to significantly more er-
rors than ColorBrewer, Tableau, and Random benchmarks (t(19) =
2.531,3.644,3.047; p = 0.020,0.002,0.007, respectively).

The fewer errors for random than for Colorgorical preferable may
be surprising, but it is consistent with our earlier observations. There is
a high likelihood that three randomly sampled colors will be far apart
in our quantized CIELAB space, leading to very high discriminability
but also low preference. As the number of randomly sampled colors
increases, discriminability decreases, as shown in the non-significant
comparisons to 5- and 8-color Colorgorical Preferable. Although the
Colorgorial-Preferable settings produced less discriminable results in
some conditions (e.g., 3-color error), there was always at least one
benchmark that lacked significantly different error rates.

Preference ratings. We predicted that both Low-Error and
Preferable palettes would be more preferable in all comparisons ex-
cept to 5- and 8-color Microsoft palettes (Fig. 8).

Low-Error was significantly more preferred than 5-color Color-
Brewer and 8-color Random (t(19) = 2.784,2.279, p = 0.012,0.034,
respectively) and was never significantly less preferred than the
other benchmarks (t(19) � 1.781, p � 0.091). Colorgorial-Preferable
palettes often led to significantly more preferable palettes (8 of 12, all
but 5- and 8-color Microsoft, 5-color Random, and 8-color Tableau;
t(19)� 2.105, p < 0.05).

Summary. Colorgorical Low-Error and Preferable palettes are
almost always as discriminable and often more preferable than the
current standard visualization-specific categorical color palettes (P).

Low-Error palettes were sometimes more discriminable and more
preferable or otherwise not significantly different than the benchmark
palettes. Similarly, Preferable palettes often led to significantly higher
preference ratings, and discriminability was not significantly different
compared to at least one industry standard for all sizes. Thus, Color-
gorical allows users without design expertise to create discriminable
and preferable palettes that often do not have significantly different
discriminability and that sometimes are more preferable than current
pre-made standards.

8 OPEN RESEARCH AREAS

We found that Colorgorical palettes, based on models of aesthetics
and discriminability, can be as effective as expert-made visualization
palettes and even more aesthetically preferable. These findings lead
to several future research directions. First, given that color combina-
tion discriminability and preference can be inversely related, how can
discriminability and preference be automatically optimized? Second,
what alternatives to the current pairwise theoretical models might bet-
ter predict discriminability and aesthetic preference for higher-order
combinations (e.g., 5- or 8-colors)? Third, how would color preference
models that diverge from figure/ground preference alter palette con-
struction? For instance, how might Lin et al.’s preferable palette gener-
ation technique that learns from artist-generated training palettes [12]
compare to palettes made with Pair Preference? Fourth, would the
same results hold if hue filters are applied when constructing Color-
gorical palettes? Fifth, how might Colorgorical help designers foresee
palettes that might be indiscriminable given color deficiencies [28]?

9 CONCLUSION

We presented Colorgorical, a model-driven approach to generating cat-
egorical color palettes for information visualizations by configuring
palette discriminability and preference. Colorgorical uses an iterative,
semi-random-sampling procedure to generate palettes of a specified
size. User-defined configurations work by changing the relative im-
portance of Perceptual Distance, Name Difference, and Pair Prefer-
ence scoring functions. Users can further customize palette creation
by modifying the number of colors, by defining which hues to sample
from, and by providing an existing palette to build upon.

The novelty of our approach stems from our departure from previ-
ous palette creation strategies. Whereas previous palette creation tools
focused primarily on discriminability or favored color relations in har-
monic templates whose empirical validity is questionable (e.g., Adobe
Color [21]), Colorgorical generates palettes with user-defined relative
importances for discriminability and aesthetic preference (Sec. 3). Our
color sampling approach also differs in strategy from pre-made palette
sets such as ColorBrewer, in which categorical palettes are generated
by first choosing colors representing different names and then varying
each palette color’s value [1].

Empirical tests show that each of Colorgorical’s sliders, which are
used to balance palette discrimination and preference, measure dif-
ferent aspects of color (Sec. 5) and modulate behavior as they were
designed to do (e.g., weighting discriminability sliders increases dis-
criminability performance) (Sec. 6).

Empirical tests that compare Colorgorical palettes and industry
standards revealed that our model-derived palettes are as effective
as, and sometimes better than, current categorical color palette stan-
dards. Our findings also indicate that the number of colors may
alter the effectiveness of pair-based discriminability and preference
scores. Colorgorical also improves upon industry standards by giv-
ing users the flexibility to create their own discriminable and prefer-
able palettes while enforcing visualization design constraints. These
results indicate that Colorgorical provides an effective way to create
categorical visualization color palettes. Colorgorical is open-sourced
at http://vrl.cs.brown.edu/color.

ACKNOWLEDGMENTS

This material is based upon work supported by a National Science
Foundation Graduate Research Fellowship under Grant No. DGE-
1058262 and Brown University’s Center for Vision Research.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 20,2020 at 00:58:46 UTC from IEEE Xplore.  Restrictions apply. 



530  IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 1, JANUARY 2017

REFERENCES

[1] C. A. Brewer, G. W. Hatchard, and M. A. Harrower. Colorbrewer in

print: A catalog of color schemes for maps. Cartography and Geographic

Information Science, 30(1):5–32, 2003.

[2] M. E. Chevreul. The principles of harmony and contrast of colours, and

their applications to the arts. Van Nostrand Reinhold, New York, NY,

USA, 1987 (1839).
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