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Why do we want interpretability?

Fairness: is the model biased? is it discriminating? 

Causality: using models to infer properties about the natural world. 

Reliability: how well does this model generalize, or transfer to a new domain? 

Trust: how much confidence do I have in the model? 

Transparency: how do I audit a model's decision-making?

[Lipton, 2017]
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[Amershi et al., CHI 2015]

ModelTracker
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Dimensionality Reduction
Project nD data to 2D or 3D. Interpret/sanity check learned representations. 

But subject to their own interpretation issues. 

Different techniques make different trade-offs:

PCA (Principal Component Analysis): 
roughly fit a p-dimensional ellipsoid to the 
data, order axes by amount of data variance 
they explain. Preserves global structure.
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Dimensionality Reduction
Project nD data to 2D or 3D. Interpret/sanity check learned representations. 

But subject to their own interpretation issues. 

Different techniques make different trade-offs: 

PCA (Principal Component Analysis): roughly fit a p-dimensional ellipsoid 
to the data, order axes by amount of data variance they explain.            
Preserves global structure. 

 t-SNE (t-Dist. Stochastic Neighbor Embedding): probabilistic distribution 
that adapts and performs different transformations on different regions.
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[Wattenberg et al., Distill 2016]

https://distill.pub/2016/misread-tsne/
https://distill.pub/2016/misread-tsne/
https://distill.pub/2016/misread-tsne/


16

[Wattenberg et al., Distill 2016]

https://distill.pub/2016/misread-tsne/
https://distill.pub/2016/misread-tsne/
https://distill.pub/2016/misread-tsne/
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[Wattenberg et al., Distill 2016]

https://distill.pub/2016/misread-tsne/
https://distill.pub/2016/misread-tsne/
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Dimensionality Reduction
Project nD data to 2D or 3D. Interpret/sanity check learned representations. 

But subject to their own interpretation issues. 

Different techniques make different trade-offs: 

PCA (Principal Component Analysis): roughly fit a p-dimensional ellipsoid 
to the data, order axes by amount of data variance they explain.            
Preserves global structure. 

 t-SNE (t-Dist. Stochastic Neighbor Embedding): probabilistic distribution 
that adapts and performs different transformations on different regions. 

UMAP (Uniform Manifold Approx. & Projection): Identify local regions, 
stitch them together. Tries to balance local/global trade-off.
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https://pair-code.github.io/understanding-umap/
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https://www.youtube.com/watch?v=war0DRbRGNE&feature=youtu.be
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Local 
Interpretable 
Model-Agnostic 
Explanations

[Ribeiro et al., KDD 2016]
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Local 
Interpretable 
Model-Agnostic 
Explanations

[Ribeiro et al., KDD 2016]

Identify 
subcomponents

Regions sufficient 
for "tree frog" 
classification.
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[SmoothGrad. Smilkov et al., 2017]
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Shared Interest: Measuring Human-AI Alignment with
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withShared Interest: Measuring Human-AI Alignment
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withShared Interest: Measuring Human-AI Alignment

http://www.vis-shared-interest.xyz/human-annotation/client/index.html


39[Kindermans et al., 2017]



40[Kindermans et al., 2017]
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Feature Visualization

Step 0 Step 4 Step 48 Step 2,048

Olah, Mordvintsev, and Schubert. Distill, 2017. 
https://distill.pub/2017/feature-visualization/
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Semantic Dictionaries
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Semantic Dictionaries
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Semantic Dictionaries
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mixed3a: Edges
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mixed4a: Geometries
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mixed4d: Objects
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https://distill.pub/2019/activation-atlas/

