6.859: Interactive Data Visualization **Research Frontiers: ML Interpretability**

Arvind Satyanarayan

Source: ImageNet

"Labrador Retriever"

Source: ImageNet

"Golden Retriever"

e: ImageNet

Sourc

"Labrador Retriever"

"Golden Retriever"

Label	Probability
Labrador retriever	69.2%
Golden retriever	11.6%
Tennis ball	2.6%

Why do we want interpretability?

- **Fairness**: is the model biased? is it discriminating?
- **Causality**: using models to infer properties about the natural world.
- **Reliability**: how well does this model generalize, or transfer to a new domain?
- **Trust**: how much confidence do I have in the model?
- **Transparency**: how do I audit a model's decision-making?

[Lipton, 2017]

KICE - CLEAN CYCLING COPY

ModelTracker

[Amershi et al., CHI 2015]

e: ImageNet

Sourc

"Labrador Retriever"

"Golden Retriever"

Label	Probability
Labrador retriever	69.2%
Golden retriever	11.6%
Tennis ball	2.6%

Hidden Layers

За

Зb

4a

"Golden Retriever"

	work
A CONTRACT	
RA	
5/Ah	Sin A
1 and	128 A
THE	
	12

Label	Probability
Labrador retriever	69.2%
Golden retriever	11.6%
Tennis ball	2.6%

Individual Neurons

channel 1

Dimensionality Reduction Project nD data to 2D or 3D. Interpret/sanity check learned representations. But subject to their own interpretation issues. Different techniques make different trade-offs: **PCA (Principal Component Analysis)**: roughly fit a p-dimensional ellipsoid to the 6 data, order axes by amount of data variance

they explain. Preserves global structure.

Dimensionality Reduction But subject to their own interpretation issues. Different techniques make different trade-offs: to the data, order axes by amount of data variance they explain. Preserves global structure.

- Project nD data to 2D or 3D. Interpret/sanity check learned representations.

 - PCA (Principal Component Analysis): roughly fit a p-dimensional ellipsoid
 - t-SNE (t-Dist. Stochastic Neighbor Embedding): probabilistic distribution that adapts and performs different transformations on different regions.

Original

Perplexity: 2 Step: 5,000

Perplexity: 5 Step: 5,000

[Wattenberg et al., Distill 2016]

Step: 5,000

Step: 5,000

Step: 60

Step: 120

Step: 1,000

Perplexity: 2 Step: 5,000

Perplexity: 5 Step: 5,000

3.2

(N)

[Wattenberg et al., Distill 2016]

Original

Perplexity: 2 Step: 5,000

Perplexity: 5 Step: 5,000

[Wattenberg et al., Distill 2016]

Perplexity: 30 Step: 5,000

Perplexity: 50 Step: 5,000

Perplexity: 100 Step: 5,000

Dimensionality Reduction But subject to their own interpretation issues. Different techniques make different trade-offs: to the data, order axes by amount of data variance they explain. Preserves global structure.

stitch them together. Tries to balance local/global trade-off.

- Project nD data to 2D or 3D. Interpret/sanity check learned representations.

 - PCA (Principal Component Analysis): roughly fit a p-dimensional ellipsoid
 - t-SNE (t-Dist. Stochastic Neighbor Embedding): probabilistic distribution that adapts and performs different transformations on different regions.
 - UMAP (Uniform Manifold Approx. & Projection): Identify local regions,

Original 3D Data

perplexity: 5 **time**: 9m 18s

[Coenen & Pearce, 2019]

2D UMAP projection

[Coenen & Pearce, 2019]

2D UMAP projection

[Coenen & Pearce, 2019]

2D UMAP projection

[Coenen & Pearce, 2019]

2D UMAP projection

Individual Neurons

channel 1

Individual Neurons

Spatial Activations

Spatial Activations

a_{1,0} = [0, 0, 0, 0, 49.6, 0, 43.6, 30.2, 119.8, 62.7, 0, 51...

Local Interpretable Model-Agnostic Explanations

[Ribeiro et al., KDD 2016]

Loca nterpretable Model-Agnostic Explanations

[Ribeiro et al., KDD 2016]

Identify subcomponents

Regions sufficient for "tree frog" classification.

Image

Label: toy terrier

[SmoothGrad. Smilkov et al., 2017]

Gradient

Integrated

Guided Backprop

Shared Interest: Measuring Human-Al Alignment

Incorrect

Correct

Incorrect

Correct

Shared Interest: Measuring Human-Al Alignment

LOW SHARED INTEREST SCORE

Incorrect

Correct

IOU COVERAGE

HIGH SHARED INTEREST SCORE

Incorrect

Correct

Shared Interest: Measuring Human-Al Alignment

k

38

Gradient and Signal Methods

[Kindermans et al., 2017]

Attribution Methods

Add a Constant Vector Shift

MNIST + Constant Shift

[Kindermans et al., 2017]

Network 1

Network 2

- Attribution Under Constant Vector Shift

Feature Visualization

Olah, Mordvintsev, and Schubert. Distill, 2017. https://distill.pub/2017/feature-visualization/

Step o

Step 4

Step 48

Step 2,048

Different optimization objectives show what different parts of a network are looking for.

- **n** layer index
- x,y spatial position
- z channel index
- k class index

Neuron layer_n[x,y,z]

Channel layer_n[:,:,z]

Layer/DeepDream layer_n[:,:,:]²

Class Logits pre_softmax[k]

Class Probability softmax[k]

Simple Optimization

Optimization with diversity reveals four different, curvy facets. Layer mixed4a, Unit 97

Simple Optimization

Optimization with diversity reveals multiple types of balls. Layer mixed5a, Unit 9

Dataset examples

Dataset examples

By jointly optimizing two neurons we can get a sense of how they interact.

REPRODUCE IN A CO NOTEBOOK

Neuron 1

Layer 4b, Unit 475

Jointly optimized

Layer 4a, Unit 476

Spatial Activations

a_{1,0} = [0, 0, 0, 0, 49.6, 0, 43.6, 30.2, 119.8, 62.7, 0, 51...

Semantic Dictionaries

9.6, 0, 43.6, 30.2, 119.8, 62.7, 0, 51...

252.

Semantic Dictionaries

3, 0, 38.5, 0, 0, 15.1, 0, 0, 10.4, ...]

Semantic Dictionaries

48.4, 10.8, 0, 0, 0, 0, 0, 52.5, 0, ...]

Activation Vector

Channels

STATE OF THE OWNER

Substantia dita.

Activation Vector

mixed3a: Edges

mixed4a: Geometries

mixed4d: Objects

MIXED3A

MIXED4A

MIXED4D

MIXED5A

MIXED3A

81					5	10	10	10		1		Ö	1	1	1 1	11		12		ĩ	γ	ľ	ni.		п	10	
15	-				÷		-		i0			8	1	č.	1.7	2		8	4				84	**	*		8
		-						13	R.	1	1	1	1	55	14	1	2			8		8		-			
8				38	U	100	15			C	3	Ŋ	3	2	22	1	¥.	ы				в				*	
	-	-		Ш	10	-	2	1	Ņ	8	2	n	ñ	1	26	73		25	4			8	-			×	
8	-	÷	÷	iii	13	1	1	8	3		0	推		V	R	Ē		Li.	а			II.			1	*	
				•	1	Ň	1		3		26	1 1	ТÌ	1	t C	C	14	50	a.	٠		81	5				
		-		-				3	٨	No.	61	i.	÷	2.5		8	25	10			P b	81		-			•
		÷				1	N.		3	Œ	3	ų.		1		8	1	ĸ	a		r e	1		-		*	
				×.	Űů,	12	1		5	N)		1	Ш.	1		2	1	10	1				8	×			
в			a a	0			3	1	10	N.	1	3	10	2	4	21	a.	18					54	-			
81			8	0	5	0	0		2	-	10	-		1					1			a.		-			
				n	10	Q	54	1	-	85	67.			10	80	6	0	-	2				15			*	
	20				6	e/	Ę.	5	N	1	5			1	e	¢	G	3	3	<u>a</u>	81	N.					14
11					ŝ		6)	-3		3	局	4			1	<	0	\sim	2	2		1		~		×	а
ы					8		1	2	2			٠				K.	C	3	Ŋ	U.		8	-				ā
н			•	•	8	1	6	r.	7			3	8			N	5	9	9	<u>91</u>		8	54				
10				•		1	1	К.	5	G.		3	×		52	3	N.	Ŷ	1	N.			**			*	
в					8		Ĩ.	8 .								5		8	п			21	81	÷	×		12
E1					8		L.	10	8		3	1	8			3		1	3				16				14
	5				6		18	1	5		5	8				1		5	14				6	1	-	25	5
-4		10		8			1	N	1	8	7	1	H		4	Ų		2					7		5	5	
1		-			-	1	1		N.	4	1 2	C	~	1	X	Y	2				5	7	0	G	5		N
	-	*	2	×.	2		-			1			3		1	4		1	3	3	57	ť		2	6	8	5
7		-		×.			-		3	2		Ţ		2	1	9	20	1	3	3	85	ş	1	G		٤,	5
						-			n,	2	N3	0	5	1	<u>.</u>	0		2	3	2	20	١.	8	٩	6	٢.	p.
E.				а.						1	4	S.	5			1	Ċ	2	2	P	2	1	2	4	3	<u>.</u>	2
B	R	57	я	**	2	*					1			.		1	35	114									

MIXED4A

MIXED4D

MIXED5A

178

	18	5	12	EM		×.		2	3	2	1				
	-	80	ы	9		1	**					1	1	17	
	18	51							1			1		1	P
	а		5	8		1	1				8	1	1		
	2	1 1	16		8		and the second s	联		1	9			1	1
	al.	11	8	1	R		20		譿	3		1		80	1
	-	12	1			2	24		4	5	5				
			8	87	1	۲					3		192		
		1		۵							1				
			R.	50				0	1						5
	۵.	2		C								9		Ø	2
W. W.					8			Ç	(Q		8	C	Q	
		.		-			1							1	

INPUT IMAGE

OUTPUT CLASSES

mixed4a

abrador Retriever	
Golden Retriever	
Fennis Ball	1
Rhodesian Ridgeback	
Appenzeller	

mixed3a

OUTPUT FACTORS

Tiger	
Tiger Cat	
Lynx	
Collie	
Border Collie	

mixed4d

×			ini.		6	19	10	Ø	10	20		8	8	68	- 22
	5					23	12	12	12	8	8	M	W	50	-
	6			0			23		QX.	2	80	8	8	39	
	2								66	1	a	æ	NE .	1	
1	2				C				BR	1 1	-	1	1		93
100	8			10					80					53	
	3		2	M	8	- 53	3	W.	85	١.				8	
56	1		26	M	N	83	1400.	M.	R	R	10	0	(53	
	3			30	K	8	200	8	10		10		<u>1</u>	38	8
10	3			8	2		22	35	a.	5	1		5	82	26
		1	1	×	Ø			ø		38	1	1 21	8		
5		20	5		25	100	<u>Li</u>	12	8	8	12	8	ж.	10	5
		<u>2</u>	15	1		25	100	1	1	1	2				
-		-	28	3 8	8 8		-	-	10		12	-	12		

mixed5a

A randomized set of one million images is fed through the network, collecting one random spatial activation per image.

The activations are fed through UMAP to reduce them to two dimensions. They are then plotted, with similar activations placed near each other.

We then draw a grid and average the activations that fall within a cell and run feature inversion on the averaged activation. We also optionally size the grid cells according to the density of the number of activations that are averaged within.

Exploring Neural Networks with Activation Atlases

By using feature inversion to visualize millions of activations from an image classification network, we create an explorable *activation atlas* of features the network has learned which can reveal how the network typically represents some concepts.

