6.859: Interactive Data Visualization Color

Arvind Satyanarayan

Modeling Color Perception

Low-Level

Physical World

Visual System

Visible Light

Cone Response

Opponent Encoding

Abstraction

High-Level

Mental Models

COLOR APPEARANCE MODELS

"Teal"

Perceptual Models

Appearance Models

Cognitive Models

Modeling Color Perception

Low-Level

Physical World

Visual System

Visible Light

Cone Response

Opponent Encoding

Abstraction

High-Level

Mental Models

Perceptual Models

Appearance Models

Cognitive Models

"Teal"

Visible Light

Light is an electromagnetic wave.

 10^{24} Hz

Wavelength (λ) between **370nm – 730nm**.

Color depends on the spectral distribution function (or **spectrum**): distribution of "relative luminance" at each wavelength.

Area under the spectrum is *intensity*: or how bright each wavelength is.

Visible Light

- Light is an electromagnetic wave.
- Wavelength (λ) between **370nm 730nm**.
- Color depends on the spectral distribution function (or **spectrum**): distribution of "relative luminance" at each wavelength.
- Area under the spectrum is *intensity*: or how bright each wavelength is.
- Additive: Perceived color is due to a combination of source lights (e.g., RGB).
- **Subtractive**: Start from a white spotlight, and materials absorb specific λ s (e.g., RYB or CMYK).

Additive (digital displays)

Subtractive (print, e-paper)

Modeling Color Perception

Low-Level

Physical World

Visual System

Visible Light

Cone Response

Opponent Encoding

Abstraction

High-Level

Mental Models

Perceptual Models

Appearance Models

Cognitive Models

"Teal"

Modeling Color Perception

Low-Level

Physical World

Visual System

Visible Light

Cone Response Opponent Encoding

Abstraction

High-Level

Mental Models

Perceptual Models

Appearance Models

Cognitive Models

"Teal"

[Helga Kolb Simple Anatomy of the Retina,]

Photoreceptors on retina are responsible for vision: rods – low-light levels, poor spatial acuity, little color vision

Photoreceptors on retina are responsible for vision: rods – low-light levels, poor spatial acuity, little color vision **cones** – sensitive to different wavelengths = color vision! short, middle, long ~ blue, green, red

[Helga Kolb Simple Anatomy of the Retina,]

Firefox and Chrome have built in simulate

()	r	S	•
				l
i				
			ļ	
				1
	ï	ï	2	2
				ï
				l

Photoreceptors on retina are responsible for vision: rods – low-light levels, poor spatial acuity, little color vision **cones** – sensitive to different wavelengths = color vision! short, middle, long ~ blue, green, red

[Helga Kolb Simple Anatomy of the Retina,]

tri-stimulus response – color can be modeled as 3 values.

[[]Maureen Stone. A Field Guide to Digital Color, 2003]

metamers – spectra that stimulate the same LMS response are indistinguishable.

[[]Maureen Stone. A Field Guide to Digital Color, 2003]

Photoreceptors on retina are responsible for vision: rods – low-light levels, poor spatial acuity, little color vision **cones** – sensitive to different wavelengths = color vision! short, middle, long ~ blue, green, red integrate against different input stimuli

tri-stimulus response – color can be modeled as 3 values.

Red = 645nmGreen = 525nmBlue = 444nm

[Maureen Stone. A Field Guide to Digital Color, 2003]

Color space standardized in 1931 to mathematically represent

[Maureen Stone. A Field Guide to Digital Color, 2003]

Green = 525nmBlue = 444nm

[Maureen Stone. A Field Guide to Digital Color, 2003]

16

mathematic transformation No real lights can produce the x, y, z response curves.

Color space standardized in 1931 to mathematically represent tri-stimulus response curves.

CIE XYZ Color Space

Chromaticity diagram: Project into a 2D plane to separate colorfulness from brightness.

$$x = \frac{X}{X + Y + Z}$$
$$y = \frac{Y}{X + Y + Z}$$
$$z = \frac{Z}{X + Y + Z} = 1 - x - y$$

y

C.I.E. 1931 Chromaticity Diagram

C.I.E. 1931 Chromaticity Diagram

CIEXYZ Color Space

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

$$z = \frac{Z}{X + Y + Z} = 1 - x - y$$

Purple line – not possible to recreate with a monochromatic light source.

Mixture of spectral violet + red (i.e., short and long wavelengths).

C.I.E. 1931 Chromaticity Diagram

C.I.E. 1931 Chromaticity Diagram

CIE XYZ Color Space 0.8 0.7 **Display gamut** = portion of the color space that can be 0.6 reproduced by a display.

0.5

^y0.4

0.3

0.2

0.1

0

CIE XYZ Color Space 0.8 0.7 **Display gamut** = portion of the color space that can be 0.6 reproduced by a display. 0.5 0.4 0.3 0.2

0.1

0.0

CIE XYZ Color Space

Display gamut = portion of the color space that can be reproduced by a display.

The angry rainbow in sRGB.

Corners of sRGB

Photoshop grayscale

No linear brightness gradient within a single hue.

Gregor Aisch How to Avoid Equidis tant HSV Colors.

Modeling Color Perception

Low-Level

Physical World

Visual System

Visible Light

Cone Response Opponent Encoding

Abstraction

High-Level

Mental Models

Perceptual Models

Appearance Models

Cognitive Models

"Teal"

Modeling Color Perception

Low-Level

Physical World

Visual System

Visible Light

Cone Response

Opponent Encoding

Abstraction

High-Level

Mental Models

Perceptual Models

Appearance Models

Cognitive Models

"Teal"

CIE LAB Color Space

Axes correspond to opponent signals:

CIE LAB Color Space

Axes correspond to opponent signals:

[Maureen Stone. A Field Guide to Digital Color, 2003]

CIE LAB Color Space

More perceptually uniform than sRGB.

Scaling of axes such that distance in color space is proportional to perceptual distance.

The angry rainbow in sRGB.

Better. But still be wary.

A happier rainbow in LAB.

[Maureen Stone. A Field Guide to Digital Color, 2003]

Modeling Color Perception

Low-Level

Physical World

Visual System

Visible Light

Cone Response

Opponent Encoding

Abstraction

High-Level

Mental Models

Perceptual Models

Appearance Models

Cognitive Models

"Teal"

Modeling Color Perception

Low-Level

Physical World

Visual System

Visible Light

Cone Response

Opponent Encoding

Abstraction

High-Level

Mental Models

COLOR APPEARANCE MODELS

"Teal"

Perceptual Models

Appearance Models

Cognitive Models

The inner and outer thin rings are, in fact, the same physical purple!

When two colors are side-by-side, they interact and affect our perception

Josef Albers

When two colors are side-by-side, they interact and affect our perception

When two colors are side-by-side, they interact and affect our perception

When two colors are side-by-side, they interact and affect our perception

Bezold Effect

Color appearance depends on adjacent colors

E.g., adding a dark border around a color can the color appear darker.

Jason Su

Our ability to adjust to color perception based on illumination

Jason Su

Our ability to adjust to color perception based on illumination

Our ability to adjust to color perception based on illumination

Our ability to adjust to color perception based on illumination

Perceived difference depends on background.

Quantitative Color Encoding

Sequential Color Scale

Ramp in luminance, possibly also hue. Typically higher values map to darker colors.

Diverging Color Scale

Useful when data has a meaningful "midpoint." Use neutral color (e.g., gray) for midpoint. Use saturated colors for endpoints.

Limit number of steps in color to 3–9

Modeling Color Perception

Low-Level

Physical World

Visual System

Visible Light

Cone Response

Opponent Encoding

Abstraction

High-Level

Mental Models

COLOR APPEARANCE MODELS

"Teal"

Perceptual Models

Appearance Models

Cognitive Models

Modeling Color Perception

Low-Level

Physical World

Visual System

Visible Light

Cone Response

Opponent Encoding

Abstraction

High-Level

Mental Models

MODELS

"Teal"

Perceptual Models

Appearance Models

Cognitive Models

Berlin & Kay, Basic Color Terms. 1969. Surveyed speakers from 20 languages. Literature from 69 languages.

World Color Survey. 1976. 110 languages (including tribal), 25 speakers each. Analysis published in 2009.

Is color naming universal? Do languages evolve color terms in similar ways?

Berlin & Kay, Basic Color Terms. 1969. Surveyed speakers from 20 languages. Literature from 69 languages.

World Color Survey. 1976. 110 languages (including tribal), 25 speakers each. Analysis published in 2009.

Is color naming universal? Do languages evolve color terms in similar ways?

Name 320 Munsell color chips. (Shares perceptual properties with CIE LAB, but predates it.)

Berlin & Kay, Basic Color Terms. 1969. Surveyed speakers from 20 languages. Literature from 69 languages.

World Color Survey. 1976. 110 languages (including tribal), 25 speakers each. Analysis published in 2009.

Is color naming universal? Do languages evolve color terms in similar ways?

+10 achromatic chips

Is color naming universal? Do languages evolve color terms in similar ways?

WCS stimulus array. For each basic color term (t) participants named, they were asked:

- Mark all chips that you would call t. 1.
- 2. Which chip is the best example(s) of t.

Is color naming universal? Do languages evolve color terms in similar ways?

Language #72 (Mixteco) Mutual info = 0.942 / Contribution = 0.476

Language #98 (Tlapaneco) Mutual info = 0.942 / Contribution = 0.524

Language #24 (Chavacano) Mutual info = 0.939 / Contribution = 0.513 9.5 9.0 8.0 7.0 6. 5.04.0 3.0 2.0 1.5 5P BAW 5R 5YR 5Y 5GY 5G 5BG 5B 5PB 5RP

Is color naming universal? Do languages evolve color terms in similar ways?

Is color naming universal? Do languages evolve color terms in similar ways?

Winawer et al, 2007.

Russian makes obligatory distinction between lighter blues ("goluboy") and darker blues ("siniy").

How does this affect color perception?

Winawer et al, 2007.

Russian makes obligatory distinction between lighter blues ("goluboy") and darker blues ("siniy").

How does this affect color perception?

Is color naming universal? Do languages evolve color terms in similar ways?

Fig. 1. The 20 blue colors used in this study are shown at the top of the figure. An example triad of color squares used in this study is shown at the bottom of the figure. Subjects were instructed to pick which one of the two bottom squares matched the color of the top square.

Winawer et al, 2007.

Russian speakers were faster at discriminating 2 colors if they fell into different categories (1 siniy, 1 goluboy) than if they were both from the same category (both siniy, or both goluboy).

Is color naming universal? Do languages evolve color terms in similar ways?

Green

Blue

UNITED

STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM

RADIO SERVICES COLOR LEGEND

ALL OCATION	USAGE DESIGNATION	
ALLOGATION	CONCEPTION NUMBER	

SERVICE	EXAMPLE	DESCRIPTION	
		And the Lorenza	

NOTALLOCATED RAD	7 5 8 MARITME MOBILE	MARITIME MOBILE	MARITIME MOBILE MOBILE Radiokoation RADONAVGATON Red	
3 kHz	MARITIME MOBILE TO TO TO THE O	FIXED	FOED FOED	RITIME MOBILE FIXED
		BROADCAITHGI (AB RAZIC)		
Number Numer Numer Numer <th></th> <th></th> <th></th> <th></th>				

BK-8131+300%

30 GHz

300 GHz

UNITED STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM

RADIO SERVICES COLOR LEGEND

300 kHz -----3 MHz MORE R 300 MHz 3 GHz

8 8

AERONAUTICAL MOBILE AERONAUTICAL MOBILE SATELLITE AERONAUTICAL RADIONAVIGATION AMATEUR AMATEUR SATELLITE BROADCASTING BROADCASTING SATELLITE EARTH EXPLORATION **SATELLITE** FIXED FIXED SATELLITE ACTIVITY CODE **GOVERNMENT EXCLUSIVE** NON-GOVERNMENT EXCLUSIVE

ALLOCATION USAGE DESIGNATION

SERVICE	EXAMPLE	DESCRIPTION	
Selman:	01200	Cardini, Latters	

Minimize overlap and ambiguity of colors.

Color I	Name	Distar	nce							Salience	Name
0.00	1.00	1.00	1.00	0.96	1.00	1.00	0.99	1.00	0.19	.47	blue 65.3%
1.00	0.00	1.00	0.98	1.00	1.00	1.00	1.00	0.97	1.00	.87	orange 92.2%
1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.70	0.99	.70	green 81.3%
1.00	0.98	1.00	0.00	1.00	0.96	0.99	1.00	1.00	1.00	.64	red 79.3%
0.96	1.00	1.00	1.00	0.00	0.95	0.83	0.98	1.00	0.97	.43	purple 52.5%
1.00	1.00	1.00	0.96	0.95	0.00	0.99	0.96	0.96	1.00	.47	brown 60.5%
1.00	1.00	1.00	0.99	0.83	0.99	0.00	1.00	1.00	1.00	.47	pink 60.3%
0.99	1.00	1.00	1.00	0.98	0.96	1.00	0.00	1.00	0.99	.74	grey 83.7%
1.00	0.97	0.70	1.00	1.00	0.96	1.00	1.00	0.00	1.00	.11	yellow 20.1%
0.19	1.00	0.99	1.00	0.97	1.00	1.00	0.99	1.00	0.00	.25	blue 27.2%
Tablea	u-10						A	verage	e 0.96	.52	

http://vis.stanford.edu/color-names/analyzer/

3

Minimize overlap and ambiguity of colors.

Color	Name	Distar	ice							Salience	Name
0.00	1.00	1.00	0.89	0.08	1.00	0.19	1.00	1.00	0.88	.44	blue 61.5%
1.00	0.00	0.99	1.00	1.00	0.81	1.00	0.78	1.00	0.99	.21	red 21.1%
1.00	0.99	0.00	1.00	0.98	0.99	1.00	1.00	0.10	1.00	.39	green 42.8%
0.89	1.00	1.00	0.00	0.92	1.00	0.80	0.84	1.00	0.31	.42	purple 57.8%
0.08	1.00	0.98	0.92	0.00	1.00	0.21	1.00	0.97	0.88	.24	blue 40.4%
1.00	0.81	0.99	1.00	1.00	0.00	1.00	0.92	1.00	1.00	.28	orange 36.3%
0.19	1.00	1.00	0.80	0.21	1.00	0.00	0.94	0.97	0.58	.16	blue 25.6%
1.00	0.78	1.00	0.84	1.00	0.92	0.94	0.00	0.99	0.76	.10	pink 21.8%
1.00	1.00	0.10	1.00	0.97	1.00	0.97	0.99	0.00	0.96	.21	green 30.8%
0.88	0.99	1.00	0.31	0.88	1.00	0.58	0.76	0.96	0.00	.25	purple 22.7%
Excel-	-10		Average 0.86 .2							.27	

http://vis.stanford.edu/color-names/analyzer/

and tone N

Minimize overlap and ambiguity of colors. Select semantically resonant colors.

[m \bigcirc S FuroV ന

Figure 6: Color assignments for categorical values in Experiment 1. (A = Algorithm, E = Expert)

https://github.com/StanfordHCI/semantic-colors

Use only a few colors (~6 ideally). Colors should be **distinctive** and **named**. Strive for color **harmony** (natural colors?). Use/respect cultural conventions; appreciate symbolism. Get it right in **black and white**. Respect the **color blind**. Take advantage of **perceptual color spaces**.

